
COMP 110/L Lecture 20
Kyle Dewey

Outline

• Introduction to objects

• Constructors and new

• Instance variables

• Instance methods

• static vs. non-static

Object-Oriented
Programming

Basic Idea
The world is composed of objects

which interact with each other in well-defined ways

Basic Idea
The world is composed of objects

which interact with each other in well-defined ways

Example: boiling water

-Task: boil water

Basic Idea
The world is composed of objects

which interact with each other in well-defined ways

Example: boiling water

faucet object

-I have a faucet object...

Basic Idea
The world is composed of objects

which interact with each other in well-defined ways

Example: boiling water

faucet object pot object

-...as well as a pot object

Basic Idea
The world is composed of objects

which interact with each other in well-defined ways

Example: boiling water

faucet object pot object

Interaction:
fill with water

-The faucet can fill the pot

Basic Idea
The world is composed of objects

which interact with each other in well-defined ways

Example: boiling water

pot objectfaucet object

Interaction:
fill with water

-Now the pot is filled with water

Basic Idea
The world is composed of objects

which interact with each other in well-defined ways

Example: boiling water

pot object

-Now the pot is filled with water

Basic Idea
The world is composed of objects

which interact with each other in well-defined ways

Example: boiling water

pot object

stove object

Interaction:
Place on top of

Basic Idea
The world is composed of objects

which interact with each other in well-defined ways

Example: boiling water

stove object
-The pot is now on top of the stove

Basic Idea
The world is composed of objects

which interact with each other in well-defined ways

Example: boiling water

stove object

Interaction:
Turn on burner

-Self-interactions are permitted, and even common

Creating Objects
In Java, we first need a class to make an object.

A class serves as a blueprint/template for an object.

Creating Objects
In Java, we first need a class to make an object.

A class serves as a blueprint/template for an object.

Stove Class

Creating Objects
In Java, we first need a class to make an object.

A class serves as a blueprint/template for an object.

Stove Class

Stove object Stove object Stove object
-The same class can be used to make different stoves
-These stoves can be different from each other, perhaps even radically different. It all
depends on exactly how the class is defined.

public class
Declares a class, and gives it

public visibility (more on that later in the course)

-This should sound familiar - you’ve been using it this whole time!

public class
Declares a class, and gives it

public visibility (more on that later in the course)

public class Table {
 ...
}

Constructors

Constructors
• Code executed upon object creation

• Effectively create the object

• Looks like a method, but no return type
(not even void) and has the same name as
the class

Constructors
• Code executed upon object creation

• Effectively create the object

• Looks like a method, but no return type
(not even void) and has the same name as
the class

public class Table {
 public Table() {
 System.out.println(
 “Creating table...”);
 }
}

-They effectiv

Constructors
• Code executed upon object creation

• Effectively create the object

• Looks like a method, but no return type
(not even void) and has the same name as
the class

public class Table {
 public Table() {
 System.out.println(
 “Creating table...”);
 }
}

Constructor

-They effectiv

Executing Constructors
new executes a given constructor,

creating a new object in the process.

Executing Constructors
new executes a given constructor,

creating a new object in the process.

Table t = new Table();

Example:
Table.java

Constructor Parameters
Just like methods, constructors can take parameters

Constructor Parameters
Just like methods, constructors can take parameters

public class ConsParam {
 public ConsParam(String str) {
 System.out.println(str);
 }
}

Constructor Parameters
Just like methods, constructors can take parameters

public class ConsParam {
 public ConsParam(String str) {
 System.out.println(str);
 }
}

ConsParam p = new ConsParam(“hi”);

Example:
ConsParam.java

Instance Variables

Instance Variables
Declared in the class.

Each object created from a class (hereafter referred to as
an instance) has its own instance variables.

Instance Variables
Declared in the class.

Each object created from a class (hereafter referred to as
an instance) has its own instance variables.

public class HasInstance {
 int myInt; // instance variable
 ...
}

Instance Variables
Declared in the class.

Each object created from a class (hereafter referred to as
an instance) has its own instance variables.

public class HasInstance {
 int myInt; // instance variable
 public HasInstance(int setInt) {
 myInt = setInt;
 }
}

public class HasInstance {
 int myInt; // instance variable
 public HasInstance(int setInt) {
 myInt = setInt;
 }
}

-Shift up the code to make some room

public class HasInstance {
 int myInt; // instance variable
 public HasInstance(int setInt) {
 myInt = setInt;
 }
}

HasInstance a = new HasInstance(7);

-Later on you execute this statement...

public class HasInstance {
 int myInt; // instance variable
 public HasInstance(int setInt) {
 myInt = setInt;
 }
}

HasInstance a = new HasInstance(7);
HasInstance b = new HasInstance(8);

-Followed by this statement...

public class HasInstance {
 int myInt; // instance variable
 public HasInstance(int setInt) {
 myInt = setInt;
 }
}

HasInstance a = new HasInstance(7);
HasInstance b = new HasInstance(8);

myInt: 7

HasInstance a:

-In memory, you’d see that a has its own value of myInt, and that is 7

public class HasInstance {
 int myInt; // instance variable
 public HasInstance(int setInt) {
 myInt = setInt;
 }
}

HasInstance a = new HasInstance(7);
HasInstance b = new HasInstance(8);

myInt: 7

HasInstance a:

myInt: 8

HasInstance b:

-Similarly, b has its own value of myInt, and that is 8
-Key point: while there is one class, there have been two objects made from this class, and
each object has its own values for the instance variable. The instance variables belong to the
objects, not the class.

Example:
HasInstance.java

Instance Methods

Instance Methods

• Define which interactions can occur
between objects

• Declared in the class

• Specific to objects created from the class
(instances), and operate over instance
variables.

public class HasInstance {
 int myInt; // instance variable
 public HasInstance(int setInt) {
 myInt = setInt;
 }
}

-To show an example, let’s take the HasInstance definition from before...

public class HasInstance2 {
 int myInt; // instance variable
 public HasInstance2(int setInt) {
 myInt = setInt;
 }

 public void printInt() {
 System.out.println(myInt);
 }
}

-...and now we add the printInt instance method
-The name of the class has also been changed, just so we can have both examples in two
separate files (namely HasInstance.java and HasInstance2.java)

Example:
HasInstance2.java

static
Associates something with the class itself,

as opposed to individual objects created from the class.

static
Associates something with the class itself,

as opposed to individual objects created from the class.

public class MyClass {
 public static void
 main(String[] args) {
 ...
 }
}

-You’ve been defining main and all your methods this way the entire time
-Java forces all source code to be in classes, so this is unavoidable. However, we haven’t
really gotten into proper objects yet.

static vs. non-static
With static: associated with the class.

Without static: associated with objects
created from the class.

static vs. non-static
With static: associated with the class.

Without static: associated with objects
created from the class.

public class MyClass {
 public static void
 main(String[] args) {
 ...
 }
}

static vs. non-static
With static: associated with the class.

Without static: associated with objects
created from the class.

public class MyClass {
 public static void
 main(String[] args) {
 ...
 }
}

With class
MyClass

static vs. non-static
With static: associated with the class.

Without static: associated with objects
created from the class.

public class MyClass {
 public static void
 main(String[] args) {
 ...
 }
}

public class MyClassTest {
 @Test
 public void someTest() {...}
}

With class
MyClass

static vs. non-static
With static: associated with the class.

Without static: associated with objects
created from the class.

public class MyClass {
 public static void
 main(String[] args) {
 ...
 }
}

public class MyClassTest {
 @Test
 public void someTest() {...}
}

With objects created from MyClassTest

With class
MyClass

Stove Example in Java

•Faucet.java

•Pot.java

•Stove.java

•BoilingWater.java

