
COMP 110/L Lecture 21
Kyle Dewey

Outline

• public / private

• “Getters” and “Setters”

• toString() method

• Memory representation

•null

public / private

public
Means it can be accessed from anywhere

public
Means it can be accessed from anywhere

public class PublicClass {
 public int i;
 public PublicClass(int x) {
 i = x;
 }
 public void printI() {
 System.out.println(i);
 }
}

Example

•PublicClass.java

•PublicClassMain.java

private
Means it can be accessed from only within the class

private
Means it can be accessed from only within the class

public class PrivateClass {
 private int i;
 private PrivateClass(int x) {
 i = x;
 }
 private void printI() {
 System.out.println(i);
 }
}

Example

•PrivateClass.java

•PrivateClassMain.java

Why public /
private?

• Intentionally allows / disallows certain
interactions between objects

• Stove example: perhaps only the stove can
turn its burner on - make it private

• Commonly used to force changes to
instance variables to go through methods
(much more predictable)

“Getters” and “Setters”

Getters
Methods that return the value of an instance variable.

Generally, the instance variable is private.

Getters
Methods that return the value of an instance variable.

Generally, the instance variable is private.

public class HasGetter {
 private int saved;
 public HasGetter(int x) {
 saved = x;
 }
 public int getSaved() {
 return saved;
 }
}

Example:
HasGetter.java

Setters
Methods that change the value of an instance variable.

The instance variable is generally private.

Setters
Methods that change the value of an instance variable.

The instance variable is generally private.

public class HasSetter {
 private int saved;
 public HasSetter(int x) {
 saved = x;
 }
 public void setSaved(int to) {
 saved = to;
 }
}

Example:
HasSetter.java

Getter / Setter Purpose

• Access to instance variables forced to
occur only via get* and set* methods

• These are the only points where change
can occur

• Much easier to predict and debug

toString() Method

toString()
Method used to convert an object to a String.

Called automatically in String contexts.

toString()
Method used to convert an object to a String.

Called automatically in String contexts.

public class HasToString {
 private String held;
 public HasToString(String s) {
 held = s;
 }
 public String toString() {
 return held;
 }
}

Example:
HasToString.java

Memory
Representation

On new
Each use of new creates a new object in memory.

Arrays are just special objects.

On new
Each use of new creates a new object in memory.

Arrays are just special objects.

new Foo();
new int[]{1, 2, 3};

On new
Each use of new creates a new object in memory.

Arrays are just special objects.

new Foo();
new int[]{1, 2, 3};

Foo {1, 2, 3}

In Memory

What new Returns
• new returns a reference to the created object

• References can be copied just like int,
double, etc.

• Copying a reference does not copy the
underlying object

What new Returns
• new returns a reference to the created object

• References can be copied just like int,
double, etc.

• Copying a reference does not copy the
underlying object

int[] arr1 = new int[]{1, 2, 3};
int[] arr2 = arr1;

What new Returns
• new returns a reference to the created object

• References can be copied just like int,
double, etc.

• Copying a reference does not copy the
underlying object

int[] arr1 = new int[]{1, 2, 3};
int[] arr2 = arr1;

{1, 2, 3}
arr1

arr2

null

null
• Special reference value

• Doesn’t actually refer to anything

• Can be checked against with ==, !=

null
• Special reference value

• Doesn’t actually refer to anything

• Can be checked against with ==, !=

int[] arr = null;
if (arr == null) {
 System.out.println(“no array”);
} else {
 System.out.println(“have array”);
}

Example:
CheckNull.java

NullPointerException
Occurs whenever you try to use null

as if it were a normal object.

NullPointerException
Occurs whenever you try to use null

as if it were a normal object.

int[] arr = null;
arr[0]; // causes NPE

Example:
CausesNPE.java

