
COMP 110/L Lecture 23
Kyle Dewey

Outline

• super in methods

• abstract Classes and Methods

• Polymorphism

super in Methods

Recap
You’ve seen super in constructors...

Recap
You’ve seen super in constructors...

public class Base {
 public Base(int x) { ... }
}

Recap
You’ve seen super in constructors...

public class Base {
 public Base(int x) { ... }
}

public class Sub extends Base {
 public Sub(int x) {
 super(x);
 }
}

super in Methods
super can also be used in methods when overloading.

Used to execute a superclass’ implementation of a method.

super in Methods
super can also be used in methods when overloading.

Used to execute a superclass’ implementation of a method.

public class Base {
 public int returnNum() {
 return 17;
 }
}

super in Methods
super can also be used in methods when overloading.

Used to execute a superclass’ implementation of a method.

public class Base {
 public int returnNum() {
 return 17;
 }
}

public class Sub extends Base {
 public int returnNum() {
 return super.returnNum() + 3;
 }
}

super in Methods
super can also be used in methods when overloading.

Used to execute a superclass’ implementation of a method.

public class Base {
 public int returnNum() {
 return 17;
 }
}

public class Sub extends Base {
 public int returnNum() {
 return super.returnNum() + 3;
 }
}

Returns 17

Example

•Base.java

•Sub.java

•SuperMethodMain.java

abstract Classes
and Methods

Mammal

Recap - A Problem

-The example from last time stated that we had Mammal objects, Cat objects, and Dog
objects
-Cat and Dog objects were both Mammal objects because of inheritance
-Having just a Mammal object (which isn’t a Cat, Dog, or some other actual animal) is strange

abstract Classes
Allows a class to be extended,

but disallows the creation of instances of that class

abstract Classes
Allows a class to be extended,

but disallows the creation of instances of that class

public class Mammal {
 public Mammal(String s) { ... }
}

-Before we defined this code...

abstract Classes
Allows a class to be extended,

but disallows the creation of instances of that class

public class Mammal {
 public Mammal(String s) { ... }
}

new Mammal(“some string”)

-And we could create instances of this class directly

abstract Classes
Allows a class to be extended,

but disallows the creation of instances of that class

public class Mammal {
 public Mammal(String s) { ... }
}

new Mammal(“some string”)

public abstract class Mammal {
 public Mammal(String s) { ... }
}

-If, however, we declare Mammal as an abstract class...

abstract Classes
Allows a class to be extended,

but disallows the creation of instances of that class

public class Mammal {
 public Mammal(String s) { ... }
}

new Mammal(“some string”)

public abstract class Mammal {
 public Mammal(String s) { ... }
}

new Mammal(“some string”)

Does not compile
-If, however, we declare Mammal as an abstract class...

•AbstractBase.java

•AbstractSub.java

•AbstractMain.java

Example

abstract Methods
• Methods of abstract classes can also be

defined abstract

• To be overridden later

• abstract methods have no bodies

abstract Methods
• Methods of abstract classes can also be

defined abstract

• To be overridden later

• abstract methods have no bodies

public abstract class Abstract {
 public abstract int getValue();
}

abstract Methods
• Methods of abstract classes can also be

defined abstract

• To be overridden later

• abstract methods have no bodies

public abstract class Abstract {
 public abstract int getValue();
}

public class Sub extends Abstract {
 public int getValue() { return 5; }
}

Example

•ArithmeticOperation.java

•Add.java

•Subtract.java

Polymorphism

Revisit

Mammal breathe

-From last time: mammals breathe, so transitively cats and dogs breathe, too
-Phrased another way, all mammals breathe, so if I have any mammal I can ask it to breathe

Cat cat = new Cat(“Tom”);
Dog dog = new Dog(“Rover”);
cat.breathe();
dog.breathe();

-Snippet of code from the last time: have variables which explicitly track that they point to
Cat and Dog objects, and we ask them both to breathe

Cat cat = new Cat(“Tom”);
Dog dog = new Dog(“Rover”);
cat.breathe();
dog.breathe();

Tom the mammal takes a breath
Rover the mammal takes a breath

-The above code produced the output that each Mammal took a breath

Cat cat = new Cat(“Tom”);
Dog dog = new Dog(“Rover”);
cat.breathe();
dog.breathe();

Tom the mammal takes a breath
Rover the mammal takes a breath

Mammal m1 = new Cat(“Tom”);
Mammal m2 = new Dog(“Rover”);
m1.breathe();
m2.breathe();

-Alternative version: we only track that the Cat and the Dog are Mammals

Cat cat = new Cat(“Tom”);
Dog dog = new Dog(“Rover”);
cat.breathe();
dog.breathe();

Tom the mammal takes a breath
Rover the mammal takes a breath

Mammal m1 = new Cat(“Tom”);
Mammal m2 = new Dog(“Rover”);
m1.breathe();
m2.breathe();

Tom the mammal takes a breath
Rover the mammal takes a breath

-Output does not change at all. m1 knows it’s really a Cat and m2 knows it’s really a dog

Polymorphism

• “many-forms”

• A Mammal could be a Cat or a Dog

• Specific use in Java: a variable with a
superclass type can hold an instance of any
subclass, too

Polymorphism

• “many-forms”

• A Mammal could be a Cat or a Dog

• Specific use in Java: a variable with a
superclass type can hold an instance of any
subclass, too

Mammal m1 = new Cat(“Tom”);
Mammal m2 = new Dog(“Rover”);

Polymorphism
Significance

Can write code without knowing exactly which
implementation is used.

Polymorphism
Significance

Can write code without knowing exactly which
implementation is used.

public static void method(Mammal m) {
 m.breathe();
}

-I don’t need to know if m is a Dog or a Cat in order to write the above code, only that m is a
Mammal so I can call the breathe() method
-Key point: breathe() can do different things

Example

•Car.java

•SportsCar.java

•SemiTruck.java

•CarMain.java

Example

•MammalRevisited.java

•CatRevisited.java

•DogRevisited.java

•MammalMainRevisited.java

