
COMP 110/L Lecture 25
Kyle Dewey

Outline

• Overloading

• Exceptions

Overloading

Recall
Random r = new Random();
r.nextInt();

-You’ve seen this sort of use of Random...

Recall
Random r = new Random();
r.nextInt();

Random r = new Random(123l);
r.nextInt(42);

-...you’ve also seen this variant of Random
-These coexist

Overloading
Two methods/constructors can have the same name in the

same scope, as long as their signatures differ

-A signature consists of both the name and the input types
-As such, as long as two methods take different inputs, they may have the same name (while
the names in the signatures are the same, the inputs differ, so the signatures are overall
different)

Overloading
Two methods/constructors can have the same name in the

same scope, as long as their signatures differ

public class Random {
 public Random() { ... }
 public Random(long seed) { ... }

 public int nextInt() { ... }
 public int nextInt(int i) { ... }
}

-A signature consists of both the name and the input types
-As such, as long as two methods take different inputs, they may have the same name (while
the names in the signatures are the same, the inputs differ, so the signatures are overall
different)

Example:
BasicOverloading.java

Example

•OverloadingBase.java

•OverloadingSub.java

•OverloadingBaseSub.java

Overloading with
Polymorphism

Method is chosen based on compile-time type

Overloading with
Polymorphism

Method is chosen based on compile-time type

•OverloadingBase.java

•OverloadingSub.java

•OverloadingAdvanced.java

Example

Overloading vs.
Overriding

• Overloading based on compile-time types

• Overriding based on run-time types

• Runtime type of base is Sub:
Base base = new Sub();

Exceptions

Recall
int[] array = new int[3];
int result = array[27];

-What happens if this code snippet is run?

Recall
int[] array = new int[3];
int result = array[27];

Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException

-What happens if this code snippet is run?

Recall
int[] array = new int[3];
int result = array[27];

Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException

int result = Integer.parseInt(“hello”);

-What happens if this code snippet is run?

Recall
int[] array = new int[3];
int result = array[27];

Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException

int result = Integer.parseInt(“hello”);

Exception in thread "main"
java.lang.NumberFormatException

-What happens if this code snippet is run?

Exceptions
• Intended to signal events which happen

infrequently but cannot be ignored

• “Exceptional”

• Errors are common examples

• Can define different kinds of exceptions for
different conditions

Exceptions
• Intended to signal events which happen

infrequently but cannot be ignored

• “Exceptional”

• Errors are common examples

• Can define different kinds of exceptions for
different conditions

java.lang.ArrayIndexOutOfBoundsException
java.lang.NumberFormatException

-For example, we can define exceptions for an array index being out of bounds (one kind of
error condition), and exceptions indicating that a number was of an unexpected format / we
couldn’t parse it (another kind of error condition)

Defining Exceptions
Inherit from the Exception class.

Both a no-arg constructor and one that takes a String.

-The passed String indicates a message which can encode more details (e.g., “57 is not
negative”)

Defining Exceptions
Inherit from the Exception class.

Both a no-arg constructor and one that takes a String.

public class MyException
 extends Exception {
 public MyException(String message) {
 super(message);
 }
}

-The passed String indicates a message which can encode more details (e.g., “57 is not
negative”)

Example:
MyException.java

Throwing Exceptions
Methods must state which exceptions they throw,

using the throws reserved word

Throwing Exceptions
Methods must state which exceptions they throw,

using the throws reserved word

public static void myMethod()
 throws MyException {
 ...
}

-Declaring that myMethod throws MyException

Throwing Exceptions
Methods must state which exceptions they throw,

using the throws reserved word

public static void myMethod()
 throws MyException {
 ...
}

public static void myMethod()
 throws MyException, OtherException {
 ...
}

-Declaring that myMethod throws MyException or OtherException

Throwing Exceptions
Exceptions can be thrown with the throw reserved word

Throwing Exceptions
Exceptions can be thrown with the throw reserved word

public static void myMethod()
 throws MyException {
 if (...) {
 throw new MyException(“message”);
 }
}

Example

•MyException.java

•ThrowMyException.java

-Key point in the example: thrown exceptions can traverse method boundaries. Main can
also throw MyException even though it doesn’t explicitly use throw, since it calls something
that says it throws MyException

Catching Exceptions
Exceptions can be caught with try...catch,

stopping them from moving up

Catching Exceptions
Exceptions can be caught with try...catch,

stopping them from moving up

try {
 myMethod();
} catch (MyException e) {
 System.out.println(e.toString());
}
System.out.println(“GETS HERE”);

Example:
CatchException.java

