
COMP 110/L Lecture 6
Kyle Dewey

Outline

• Methods

• Variable scope

• Call-by-value

• Testing with JUnit

Variable Scope

Question
Does this compile?

public class Test {
 public static void
 main(String[] args) {
 int x = 7;
 int x = 8;
 }
}

Question
Does this compile?

public class Test {
 public static void
 main(String[] args) {
 int x = 7;
 int x = 8;
 }
} Same name

Question
Does this compile?

public class Test {
 public static void
 main(String[] args) {
 int x = 7;
 int x = 8;
 }
} Same name

Does not compile!
error: variable x is already defined in

method main

Methods and Variables
• Method parameters introduce new variables

• Method bodies may introduce new variables

Methods and Variables
• Method parameters introduce new variables

• Method bodies may introduce new variables

public static int foo(int x) {
 int y = x + 1;
 return y;
}

Methods and Variables
• Method parameters introduce new variables

• Method bodies may introduce new variables

public static int foo(int x) {
 int y = x + 1;
 return y;
}

public static void
main(String[] args) {
 int y = 8;
 System.out.println(y);
}

Methods and Variables
• Method parameters introduce new variables

• Method bodies may introduce new variables

public static int foo(int x) {
 int y = x + 1;
 return y;
}

public static void
main(String[] args) {
 int y = 8;
 System.out.println(y);
}

Same name - does this compile?

Methods and Variables
• Method parameters introduce new variables

• Method bodies may introduce new variables

public static int foo(int x) {
 int y = x + 1;
 return y;
}

public static void
main(String[] args) {
 int y = 8;
 System.out.println(y);
}

Same name - does this compile?

Yup!

Why?

• Declared variables have a scope

• Declaring two variables with the same name in
the same scope: error

• Declaring two variables with the same name in
different scopes: ok

• Scopes are introduced with {}

public class Test {
 public static void
 main(String[] args) {
 int x = 7;
 int x = 8;
 }
}

public class Test {
 public static void
 main(String[] args) {
 int x = 7;
 int x = 8;
 }
}

public class Test {
 public static void
 main(String[] args) {
 int x = 7;
 int x = 8;
 }
} Scope of main

public class Test {
 public static void
 main(String[] args) {
 int x = 7;
 int x = 8;
 }
} Scope of main

Same variable
name in same
scope: error

public static int foo(int x) {
 int y = x + 1;
 return y;
}

public static void
main(String[] args) {
 int y = 8;
 System.out.println(y);
}

public static int foo(int x) {
 int y = x + 1;
 return y;
}

public static void
main(String[] args) {
 int y = 8;
 System.out.println(y);
}

public static int foo(int x) {
 int y = x + 1;
 return y;
}

public static void
main(String[] args) {
 int y = 8;
 System.out.println(y);
}

Scope of foo

Scope of main

public static int foo(int x) {
 int y = x + 1;
 return y;
}

public static void
main(String[] args) {
 int y = 8;
 System.out.println(y);
}

Scope of foo

Scope of main

Same variable name in different scopes: ok

-Motivation for scoping: if all variables were in the same scope (i.e., you could never reuse a
variable name), you’d have to read through all methods just to figure out which variable
names you could use
-This quickly gets ridiculous (programs which have hundreds of thousands of lines are not
uncommon)

Call-by-Value

public static void something(int x) {
 x = 1;
}

public static void
main(String[] args) {
 int x = 8
 something(x);
 System.out.println(x);
}

Question
What does this code print?

public static void something(int x) {
 x = 1;
}

public static void
main(String[] args) {
 int x = 8
 something(x);
 System.out.println(x);
}

Question
What does this code print?

Answer: 8

Why?
• Java uses call-by-value

• Semantics: when a call is made, the method
called works with a copy of passed data

Why?
• Java uses call-by-value

• Semantics: when a call is made, the method
called works with a copy of passed data

public static void something(int x) {
 x = 1;
}

public static void
main(String[] args) {
 int x = 8
 something(x);
 System.out.println(x);
}

Why?
• Java uses call-by-value

• Semantics: when a call is made, the method
called works with a copy of passed data

public static void something(int x) {
 x = 1;
}

public static void
main(String[] args) {
 int x = 8
 something(x);
 System.out.println(x);
}

any changes something
makes will

only change the copy

something gets a copy of x

-This is in contrast to call-by-reference semantics, wherein the original x would change
-C++ has optional call-by-reference (default is call-by-value)

Testing with JUnit

Testing Motivation

• Builds confidence that code works as intended

• Ensures that code doesn’t break if
downstream changes are made

JUnit Motivation

• Wildly popular for writing tests for Java

• Can do a lot

Example:
TrianglePerimeter.java

Key Point 1: Filename
Tests must be held in MyClassTest.java,
where the code is held in MyClass.java

Key Point 1: Filename
Tests must be held in MyClassTest.java,
where the code is held in MyClass.java

TrianglePerimeter.java

Key Point 1: Filename
Tests must be held in MyClassTest.java,
where the code is held in MyClass.java

TrianglePerimeter.java

TrianglePerimeterTest.java

Key Point 1: Filename
Tests must be held in MyClassTest.java,
where the code is held in MyClass.java

TrianglePerimeter.java

TrianglePerimeterTest.java

AddFive.java

Key Point 1: Filename
Tests must be held in MyClassTest.java,
where the code is held in MyClass.java

TrianglePerimeter.java

TrianglePerimeterTest.java

AddFive.java

AddFiveTest.java

Key Point 2: imports
File containing tests must begin with:

import static org.junit.Assert.assertEquals;
import org.junit.Test;

Key Point 3: Method Setup
Each test is a method of the form:

@Test public void testName() {
 ...
}

Key Point 3: Method Setup
Each test is a method of the form:

@Test public void testName() {
 ...
}

Note: no static

Key Point 4:
assertEquals

• Test method bodies must contain
assertEquals, which fails the test if the
two passed values are not equal

• Tests without assertEquals test nothing!

Key Point 4:
assertEquals

• Test method bodies must contain
assertEquals, which fails the test if the
two passed values are not equal

• Tests without assertEquals test nothing!

@Test public void myTest() {
 assertEquals(1, 2);
}

Key Point 5:
ClassName.methodName
To call a method foo defined in Foo.java from
FooTest.java, you must say Foo.foo()

Key Point 5:
ClassName.methodName
To call a method foo defined in Foo.java from
FooTest.java, you must say Foo.foo()

@Test public void myOtherTest() {
 assertEquals(Foo.foo(7), 2);
}

