
COMP 110/L Lecture 7
Kyle Dewey

Outline

• Modulus (%) operator

• The boolean type

• if / else

• Testing approaches with if / else

Modulus (%) Operator

Modulus (%) Operator
Gets the remainder after division is performed on ints.

Modulus (%) Operator
Gets the remainder after division is performed on ints.

int x = 5 / 2;

Modulus (%) Operator
Gets the remainder after division is performed on ints.

int x = 5 / 2;

x: 2

Modulus (%) Operator
Gets the remainder after division is performed on ints.

int x = 5 / 2;

x: 2 2 remainder 1

Modulus (%) Operator
Gets the remainder after division is performed on ints.

int x = 5 / 2;

x: 2

int x = 5 % 2;

2 remainder 1

Modulus (%) Operator
Gets the remainder after division is performed on ints.

int x = 5 / 2;

x: 2

int x = 5 % 2;

x: 1

2 remainder 1

2 remainder 1

Modulus (%) Operator
Gets the remainder after division is performed on ints.

int x = 1 / 2;

Modulus (%) Operator
Gets the remainder after division is performed on ints.

int x = 1 / 2;

x: 0

Modulus (%) Operator
Gets the remainder after division is performed on ints.

int x = 1 / 2;

x: 0 0 remainder 1

Modulus (%) Operator
Gets the remainder after division is performed on ints.

int x = 1 / 2;

x: 0 0 remainder 1

int x = 1 % 2;

Modulus (%) Operator
Gets the remainder after division is performed on ints.

int x = 1 / 2;

x: 0 0 remainder 1

int x = 1 % 2;

x: 1

Modulus (%) Operator
Gets the remainder after division is performed on ints.

int x = 1 / 2;

x: 0 0 remainder 1

int x = 1 % 2;

x: 1 0 remainder 1

Example:
ModExample.java

boolean

boolean
• Represents the truth value of a question

• Only two possible values: true and false

boolean
• Represents the truth value of a question

• Only two possible values: true and false

boolean x = true;

boolean
• Represents the truth value of a question

• Only two possible values: true and false

boolean x = true;

boolean y = false;

-No quotes around true and false
-”true” is a string holding the text “true”, whereas true is a boolean value indicating truth

Comparisons
boolean is useful for arithmetic comparisons

Comparisons
boolean is useful for arithmetic comparisons

boolean a = 5 > 1; // sets a to true

Comparisons
boolean is useful for arithmetic comparisons

boolean a = 5 > 1; // sets a to true

boolean b = 5 < 1; // sets b to false

Comparisons
boolean is useful for arithmetic comparisons

boolean a = 5 > 1; // sets a to true

boolean b = 5 < 1; // sets b to false

boolean c = 5 <= 5; // sets c to true

Comparisons
boolean is useful for arithmetic comparisons

boolean a = 5 > 1; // sets a to true

boolean b = 5 < 1; // sets b to false

boolean c = 5 <= 5; // sets c to true

boolean d = 6 >= 5; // sets d to true

Comparisons
boolean is useful for arithmetic comparisons

boolean e = 5 == 5; // sets e to true

Comparisons
boolean is useful for arithmetic comparisons

boolean e = 5 == 5; // sets e to true

boolean f = 5 == 6; // sets f to false

Comparisons
boolean is useful for arithmetic comparisons

boolean e = 5 == 5; // sets e to true

boolean f = 5 == 6; // sets f to false

boolean g = 5 != 5; // sets g to false

Comparisons
boolean is useful for arithmetic comparisons

boolean e = 5 == 5; // sets e to true

boolean f = 5 == 6; // sets f to false

boolean g = 5 != 5; // sets g to false

boolean h = 5 != 6; // sets h to true

String Concatentaion
Works as you might expect

String Concatentaion
Works as you might expect

true + “foo”

String Concatentaion
Works as you might expect

true + “foo”

“truefoo”

String Concatentaion
Works as you might expect

true + “foo”

“truefoo”

“bar” + false

String Concatentaion
Works as you might expect

true + “foo”

“truefoo”

“bar” + false

“barfalse”

Example:
Comparisons.java

if / else

if / else
Used to conditionally execute code
based on a boolean truth value

if / else
Used to conditionally execute code
based on a boolean truth value

if (true) {
 System.out.println(“yes”);
} else {
 System.out.println(“no”);
}

if / else
Used to conditionally execute code
based on a boolean truth value

if (true) {
 System.out.println(“yes”);
} else {
 System.out.println(“no”);
}

Prints yes

if / else
Used to conditionally execute code
based on a boolean truth value

if (5 < 2) {
 System.out.println(“yes”);
} else {
 System.out.println(“no”);
}

if / else
Used to conditionally execute code
based on a boolean truth value

if (5 < 2) {
 System.out.println(“yes”);
} else {
 System.out.println(“no”);
}

Prints no

Example:
IsGreaterThan5.java

-The real utility if/else is when we don’t know the truth value of the condition ahead of time

Example:
MultipleReturn.java

-The real utility if/else is when we don’t know the truth value of the condition ahead of time

Testing Advice with
if / else

• Ideally, for each if / else, have two tests

• One for if the condition is true

• Another for if the condition is false

Testing Advice with
if / else

• Ideally, for each if / else, have two tests

• One for if the condition is true

• Another for if the condition is false

Question: which tests may be good for
testing absolute value?

Testing Advice with
if / else

• Ideally, for each if / else, have two tests

• One for if the condition is true

• Another for if the condition is false

Question: which tests may be good for
testing absolute value?

A positive value and a negative value

Example:
MultipleReturnTest.java

