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Outline

• Modulus (%) operator

• The boolean type

• if / else

• Testing approaches with if / else
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Modulus (%) Operator
Gets the remainder after division is performed on ints.

int x = 1 / 2;

x: 0 0 remainder 1

int x = 1 % 2;

x: 1 0 remainder 1



Example:
ModExample.java
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boolean
• Represents the truth value of a question

• Only two possible values: true and false

boolean x = true;

boolean y = false;

-No quotes around true and false
-”true” is a string holding the text “true”, whereas true is a boolean value indicating truth
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Comparisons
boolean is useful for arithmetic comparisons

boolean e = 5 == 5; // sets e to true

boolean f = 5 == 6; // sets f to false

boolean g = 5 != 5; // sets g to false

boolean h = 5 != 6; // sets h to true
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String Concatentaion
Works as you might expect

true + “foo”

“truefoo”

“bar” + false

“barfalse”



Example:
Comparisons.java
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if / else
Used to conditionally execute code
based on a boolean truth value

if (5 < 2) {
  System.out.println(“yes”);
} else {
  System.out.println(“no”);
}

Prints no



Example:
IsGreaterThan5.java

-The real utility if/else is when we don’t know the truth value of the condition ahead of time



Example:
MultipleReturn.java

-The real utility if/else is when we don’t know the truth value of the condition ahead of time
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Testing Advice with 
if / else

• Ideally, for each if / else, have two tests

• One for if the condition is true

• Another for if the condition is false

Question: which tests may be good for
testing absolute value?

A positive value and a negative value 



Example:
MultipleReturnTest.java


