COMP 1 10/L Lecture |10

Kyle Dewey

Qutline

® switch

swlitch

Problem

if is verbose when checking many conditions.

Problem

if is verbose when checking many conditions.

1f (x == 5) {
return “foo”;

} else 1f (x == 0) {
return “bar”;

} else 1f (x == 7)) {
return “baz”;

} else 1f (x == 8) {
return “blah”;

} else {

return “unknown’”;

Enter switch

switch allows for multiple == conditions to be checked

1f (x == 5) {
return “foo”;

} else 1f (x == 0) {
return “bar”;

} else 1f (x == 7)) {
return “baz”;

} else 1f (x == 8) {
return “blah”;

} else {

return “unknown’”;

Enter switch

switch allows for multiple == conditions to be checked

11

(x
return
else 1f
return
else 1f
return
else 1f
return
else {
return

) 1
\\fOO//;
(X ==
\\bar//;
(x == 7)
\\baZ//;

(x == 8)
\\blah//;

0)

“unknown” ;

{

{

{

switch
case DO:
return
case 06:
return
case /:
return
case 3:
return
default:
return

(x) 1

\\fOO//;

\\bar//;

\\baZ//;

\\blah// ;

“unknown?’” ;

Example:
SwitchBasic. java

switch Semantics

® | ook at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch Semantics

® | ook at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (x) {
case 1:
return “hi”;
case 2:
System.out.println (Ybye”);
default:
System.out.println (Yhuh”);

switch Semantics

® | ook at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (1) {
case 1:
return “hi”;
case 2:
System.out.println (Ybye”);
default:
System.out.println (Yhuh”);

J

-If the value we switch onis 1...

switch Semantics

® | ook at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (1)
> case
return “hi’”;
case 2:
System.out.println (Ybye”);
default:
System.out.println (Yhuh”);

J

—...then jump to case 1...

switch Semantics

® | ook at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (1)
case
> return “hi”;
case 2:
System.out.println (Ybye”);
default:
System.out.println (Yhuh”);

J

—...and start executing statements from this point.

switch Semantics

® | ook at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (1) {
case
> “hi”,’
case 2:
System.out.println (Ybye”);
default:
System.out.println (Yhuh”);

J

-In this case, because it’s a return, execution stops here (returning to whoever called this)

switch Semantics

® | ook at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (3) {
case 1:
return “hi”;
case 2:
System.out.println (Ybye”);
default:
System.out.println (Yhuh”);

J

-If the value we switch on is 3...

switch Semantics

® | ook at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (3) {
case 1:
return “hi”;
case 2:
System.out.println (Ybye”);
> default:
System.out.println (Yhuh”);

J

—...then we jump to the default case, as there is no case for 3

switch Semantics

® | ook at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (3) {
case 1:
return “hi”;
case 2:
System.out.println (Ybye”);
default:
> System.out.println (Yhuh”);

J

-We would then print out “huh’...

switch Semantics

® | ook at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (3) {
case 1:
return “hi”;
case 2:
System.out.println (Ybye”);
default:
System.out.println (Yhuh”);

>)

—...and then simply trail out of the switch statement
-Whichever statement follows the switch would be executed, just as with if

switch Semantics

® | ook at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (2) {
case 1:
return “hi”;
case 2:
System.out.println (Ybye”);
default:
System.out.println (Yhuh”);

J

-If the value we switch on is 2...

switch Semantics

® | ook at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (2)
case 1:
return “hi’”;
» case 2:
System.out.println (Ybye”);
default:
System.out.println (Yhuh”);

J

—...then we jump to the case for 2...

switch Semantics

® | ook at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (2) {
case 1:
return “hi”;
case
> System.out.println (Ybye”);
default:
System.out.println (Yhuh”);

J

—...and then start executing subsequent statements.
-We’d first print “bye”...

switch Semantics

® | ook at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (2)
case 1:
return “hi’”;
case
System.out.println (Ybye”);
default:
> System.out.println (“huh”);

J

—...but because nothing stopped us, we’d go to the next statement.
-In this case, this would mean we’d also print “huh”...

switch Semantics

® | ook at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (2)
case 1:
return “hi’”;
case 2:
System.out.println (Ybye”);
default:
System.out.println (Yhuh”);

>)

—...and then would trail out of the switch, just as before

SWI1

Lt ch

Example:

a1

chrough. java

Preventing “fall-through”

The break statement will exit out of a switch.

Preventing “fall-through”

The break statement will exit out of a switch.

switch (x) {
case 1:
return “hi”;
case Z2:
System.out.println (Ybye”);
default:
System.out.println (“huh”);

-If | take the switch from before...

Preventing “fall-through”

The break statement will exit out of a switch.

switch (x) {
case 1:
return “hi”;
case Z2:
System.out.println (Ybye”);
break;
default:
System.out.println (“huh”);

—...and then throw a break in...

Preventing “fall-through”

The break statement will exit out of a switch.

switch (2) |
case 1:
return “hi’”;
case Z2:
System.out.println (Ybye”);
break;
default:
System.out.println (“huh”);

—...this now behaves differently on case 2

Preventing “fall-through”

The break statement will exit out of a switch.

switch (2) |

case 1:
return “hi”;

> case 2:

System.out.println (Ybye”);
break;

default:
System.out.println (“huh”);

-We’d still jump to the case 2...

Preventing “fall-through”

The break statement will exit out of a switch.

switch (2) |

case 1:
return “hi’”;

case Z:

> System.out.println (“bye”);
break;

default:
System.out.println (Yhuh”);

-We’d still execute the subsequent statement (printing “bye”)...

Preventing “fall-through”

The break statement will exit out of a switch.

switch (2) |
case 1:
return “hi’”;
case Z:
System.out.println (Ybye”);
>» break;
default:
System.out.println (“huh”);

—...but when we reach the break, we exit out of the switch

Preventing “fall-through”

The break statement will exit out of a switch.

switch (2) {

case 1:
return “hi”;
case 2:
System.out.println (Ybye”);
break;
default:
System.out.println (“huh”);
>}

—...but when we reach the break, we exit out of the switch
-End result: “bye” is printed, but not “huh”

Example:
SwitchBreak. java

switch and lesting

Each case is a test candidate, as is default.

switch and lesting

Each case is a test candidate, as is default.

int result = 0;
switch (input) {
case 1:

result = result + 2;
case 2:

result = result + 5;
default:

result = result + 12;

switch and lesting

Each case is a test candidate, as is default.

int result = 0;
swlitch (input)
1 case 1:

{

result = result + 2;
case 2:

result = result + 5;
default:

result = result + 12;

switch and lesting

Each case is a test candidate, as is default.

int result = 0;
swlitch (input)
1 case 1:

{

result = result + 2;
2 case 2:
result = result + 5;
default:
result = result + 12;

switch and lesting

Each case is a test candidate, as is default.

int result = 0;
swlitch (input)
1 case 1:

{

result = result + 2;
2 case 2:

result = result + 5;
3 default:

result = result + 12;

