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Outline

• Loops

•while

•for

•do...while

• Shorthand variable updates

• Loops with arrays
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Motivation
Some computations need to be performed multiple times

Question: given only +, how can * be implemented?

3 * 4

3 + 3 + 3 + 3 (or 4 + 4 + 4)

12

A * B
Add A to itself B times
(with some extra rules)

-High level question - forget code for a moment
-Extra rules: handling negative values and 0



-We can define a method signature for this



public static int
multiply(int a, int b) {
  ...
}

-We can define a method signature for this



public static int
multiply(int a, int b) {
  switch (b) {
  case 0:
    return 0;
  case 1:
    return a;
  case 2:
    return a + a;
  case 3:
    return a + a + a;
  ...
  }
}

-We can sorta define it, but this clearly isn’t going to work in general.  We’d have literally 
billions of cases.
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Enter while
Intuition: while a condition is true, execute the given code.
Condition checked, all code executed, condition checked...

int x = 0;
while (x < 10) {
  System.out.println(x);
  x = x + 1;
}



Example:
WhileXLessThan10.java



Revisiting Multiplication:
MultiplyWithWhile.java
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while Caveat
Counterintuitively, it does not exactly mean:

 “while condition is true”

int x = 0;
while (x < 5) {
  System.out.println(“hi”);
  x = 10;
  System.out.println(“bye”);
}

Prints:
hi
bye

Condition only checked here

-This is so counterintuitive that students generally better understand while loops if they are 
renamed banana loops



A Pattern Emerges

• Many loops commonly:

• Do some sort of initialization

• Check some sort of condition

• Update some variables on each iteration

• Special type of loop for this: for



for Loops
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for Loops
int x = 0;
while (x < 10) {
  System.out.println(x);
  x = x + 1;
}

Initialization
Condition check

Variable update

for (int x = 0; x < 10; x = x + 1) {
  System.out.println(x);
}

Initialization Condition check Variable update

-The equivalent for loop



Example:
ForXLessThan10.java



Revisiting Multiplication:
MultiplyWithFor.java
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Same Condition Caveat
Condition is only checked at the start of the loop.

for (int x = 0; x < 5;) {
  System.out.println(“hi”);
  x = 10;
  System.out.println(“bye”);
}

Increment is only done at the end of the loop.

Prints:
hi
bye

Condition only checked here



for vs. while

• Sometimes for is more appropriate, 
sometimes while

• Depends on what you need

• Either will work in any situation where a 
loop is needed



do...while Loops
Like a while loop, but the condition is checked at the end.
do...while always executes at least once, unlike while.



do...while Loops
Like a while loop, but the condition is checked at the end.
do...while always executes at least once, unlike while.

int x = 0;
do {
  System.out.println(x);
  x = x + 1;
} while (x < 10);



Example:
DoWhileXLessThan10.java



Multiplication with 
do...while
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Multiplication with 
do...while

Conversion to do...while would be incorrect

public static int
multiply(int a, int b) {
  int result = 0;
  while (b > 0) {
    result = result + a;
    b = b - 1;
  }
  return result;
}

Won’t be true
if b initially was 0



Shorthand Variable 
Updates
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-Some examples we’ve seen already
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Motivation
We very often update variables in loops

x = x + 1;
b = b - 1;
result = result + a;

x++ OR ++x
b-- OR --b
result += a;

Saves some typing, very commonly used.

-x++ returns the current value of x then increments it later
-++x increments x and then returns the incremented value
-Same reasoning applies for b-- OR --b
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Loops with Arrays
Can iterate through arrays using loops

for (int x = 0; x < arr.length; x++) {
  System.out.println(x);
}

Not <=, since arrays start from 0



Example:
PrintArgs.java



Example:
MultiplyAllArgs.java


