
COMP 110/L Lecture 12
Kyle Dewey

Outline

• Loops

•while

•for

•do...while

• Shorthand variable updates

• Loops with arrays

Loops

Motivation
Some computations need to be performed multiple times

Motivation
Some computations need to be performed multiple times

Question: given only +, how can * be implemented?

3 * 4

-High level question - forget code for a moment

Motivation
Some computations need to be performed multiple times

Question: given only +, how can * be implemented?

3 * 4

3 + 3 + 3 + 3 (or 4 + 4 + 4)

-High level question - forget code for a moment

Motivation
Some computations need to be performed multiple times

Question: given only +, how can * be implemented?

3 * 4

3 + 3 + 3 + 3 (or 4 + 4 + 4)

12

-High level question - forget code for a moment

Motivation
Some computations need to be performed multiple times

Question: given only +, how can * be implemented?

3 * 4

3 + 3 + 3 + 3 (or 4 + 4 + 4)

12

A * B

-High level question - forget code for a moment

Motivation
Some computations need to be performed multiple times

Question: given only +, how can * be implemented?

3 * 4

3 + 3 + 3 + 3 (or 4 + 4 + 4)

12

A * B
Add A to itself B times
(with some extra rules)

-High level question - forget code for a moment
-Extra rules: handling negative values and 0

-We can define a method signature for this

public static int
multiply(int a, int b) {
 ...
}

-We can define a method signature for this

public static int
multiply(int a, int b) {
 switch (b) {
 case 0:
 return 0;
 case 1:
 return a;
 case 2:
 return a + a;
 case 3:
 return a + a + a;
 ...
 }
}

-We can sorta define it, but this clearly isn’t going to work in general. We’d have literally
billions of cases.

Enter while
Intuition: while a condition is true, execute the given code.
Condition checked, all code executed, condition checked...

Enter while
Intuition: while a condition is true, execute the given code.
Condition checked, all code executed, condition checked...

int x = 0;
while (x < 10) {
 System.out.println(x);
 x = x + 1;
}

Example:
WhileXLessThan10.java

Revisiting Multiplication:
MultiplyWithWhile.java

while Caveat
Counterintuitively, it does not exactly mean:

 “while condition is true”

while Caveat
Counterintuitively, it does not exactly mean:

 “while condition is true”

int x = 0;
while (x < 5) {
 System.out.println(“hi”);
 x = 10;
 System.out.println(“bye”);
}

while Caveat
Counterintuitively, it does not exactly mean:

 “while condition is true”

int x = 0;
while (x < 5) {
 System.out.println(“hi”);
 x = 10;
 System.out.println(“bye”);
}

Prints:
hi
bye

Condition only checked here

-This is so counterintuitive that students generally better understand while loops if they are
renamed banana loops

A Pattern Emerges

• Many loops commonly:

• Do some sort of initialization

• Check some sort of condition

• Update some variables on each iteration

• Special type of loop for this: for

for Loops

for Loops
int x = 0;
while (x < 10) {
 System.out.println(x);
 x = x + 1;
}

for Loops
int x = 0;
while (x < 10) {
 System.out.println(x);
 x = x + 1;
}

Initialization

for Loops
int x = 0;
while (x < 10) {
 System.out.println(x);
 x = x + 1;
}

Initialization
Condition check

for Loops
int x = 0;
while (x < 10) {
 System.out.println(x);
 x = x + 1;
}

Initialization
Condition check

Variable update

for Loops
int x = 0;
while (x < 10) {
 System.out.println(x);
 x = x + 1;
}

Initialization
Condition check

Variable update

for (int x = 0; x < 10; x = x + 1) {
 System.out.println(x);
}

-The equivalent for loop

for Loops
int x = 0;
while (x < 10) {
 System.out.println(x);
 x = x + 1;
}

Initialization
Condition check

Variable update

for (int x = 0; x < 10; x = x + 1) {
 System.out.println(x);
}

Initialization

-The equivalent for loop

for Loops
int x = 0;
while (x < 10) {
 System.out.println(x);
 x = x + 1;
}

Initialization
Condition check

Variable update

for (int x = 0; x < 10; x = x + 1) {
 System.out.println(x);
}

Initialization Condition check

-The equivalent for loop

for Loops
int x = 0;
while (x < 10) {
 System.out.println(x);
 x = x + 1;
}

Initialization
Condition check

Variable update

for (int x = 0; x < 10; x = x + 1) {
 System.out.println(x);
}

Initialization Condition check Variable update

-The equivalent for loop

Example:
ForXLessThan10.java

Revisiting Multiplication:
MultiplyWithFor.java

Same Condition Caveat
Condition is only checked at the start of the loop.

Increment is only done at the end of the loop.

Same Condition Caveat
Condition is only checked at the start of the loop.

for (int x = 0; x < 5;) {
 System.out.println(“hi”);
 x = 10;
 System.out.println(“bye”);
}

Increment is only done at the end of the loop.

Same Condition Caveat
Condition is only checked at the start of the loop.

for (int x = 0; x < 5;) {
 System.out.println(“hi”);
 x = 10;
 System.out.println(“bye”);
}

Increment is only done at the end of the loop.

Prints:
hi
bye

Condition only checked here

for vs. while

• Sometimes for is more appropriate,
sometimes while

• Depends on what you need

• Either will work in any situation where a
loop is needed

do...while Loops
Like a while loop, but the condition is checked at the end.
do...while always executes at least once, unlike while.

do...while Loops
Like a while loop, but the condition is checked at the end.
do...while always executes at least once, unlike while.

int x = 0;
do {
 System.out.println(x);
 x = x + 1;
} while (x < 10);

Example:
DoWhileXLessThan10.java

Multiplication with
do...while

Conversion to do...while would be incorrect

Multiplication with
do...while

Conversion to do...while would be incorrect

public static int
multiply(int a, int b) {
 int result = 0;
 while (b > 0) {
 result = result + a;
 b = b - 1;
 }
 return result;
}

Multiplication with
do...while

Conversion to do...while would be incorrect

public static int
multiply(int a, int b) {
 int result = 0;
 while (b > 0) {
 result = result + a;
 b = b - 1;
 }
 return result;
}

Won’t be true
if b initially was 0

Shorthand Variable
Updates

Motivation
We very often update variables in loops

Motivation
We very often update variables in loops

x = x + 1;
b = b - 1;
result = result + a;

-Some examples we’ve seen already

Motivation
We very often update variables in loops

x = x + 1;
b = b - 1;
result = result + a;

x++ OR ++x
b-- OR --b
result += a;

-x++ returns the current value of x then increments it later
-++x increments x and then returns the incremented value
-Same reasoning applies for b-- OR --b

Motivation
We very often update variables in loops

x = x + 1;
b = b - 1;
result = result + a;

x++ OR ++x
b-- OR --b
result += a;

Saves some typing, very commonly used.

-x++ returns the current value of x then increments it later
-++x increments x and then returns the incremented value
-Same reasoning applies for b-- OR --b

Loops with Arrays

Loops with Arrays
Can iterate through arrays using loops

Loops with Arrays
Can iterate through arrays using loops

for (int x = 0; x < arr.length; x++) {
 System.out.println(x);
}

Loops with Arrays
Can iterate through arrays using loops

for (int x = 0; x < arr.length; x++) {
 System.out.println(x);
}

Not <=, since arrays start from 0

Example:
PrintArgs.java

Example:
MultiplyAllArgs.java

