COMP 110/L Lecture 15

Kyle Dewey

Outline

Loops with arrays

Can iterate through arrays using loops

Can iterate through arrays using loops

```
for (int x = 0; x < arr.length; x++) {
   System.out.println(x);
}</pre>
```

Can iterate through arrays using loops

```
Not <=, since arrays start from 0
```

```
for (int x = 0; x < arr.length; x++) {
   System.out.println(x);
}</pre>
```

Example:

PrintArgs.java

Common pattern: build a single result via iteration. Update this result for each iteration.

Common pattern: build a single result via iteration. Update this result for each iteration.

Common pattern: build a single result via iteration. Update this result for each iteration.

Example: arithmetic product

 $\{ \ \}$

-First case: product of a list of no numbers

Common pattern: build a single result via iteration. Update this result for each iteration.

Example: arithmetic product

 $\{\ \}$

1

-First case: product of a list of no numbers

-This is defined to be 1

Common pattern: build a single result via iteration. Update this result for each iteration.

Example: arithmetic product

 $\{ \ \ \}$

1

{ 5 }

-Second case: product of a list containing a single number

Common pattern: build a single result via iteration. Update this result for each iteration.

Example: arithmetic product

 $\{ \ \}$

1

{ 5 }

1 * 5

- -Second case: product of a list containing a single number
- -This is defined as 1 * that number, always yielding that number

Common pattern: build a single result via iteration. Update this result for each iteration.

Example: arithmetic product

{ }

1

{ 5 }

1 * 5

5

⁻Second case: product of a list containing a single number

⁻This is defined as 1 * that number, always yielding that number

{5, 8}

-Instead of doing all the multiplications at once, I'll do them stepwise, which mirrors what the code will need to do

-Instead of doing all the multiplications at once, I'll do them stepwise, which mirrors what the code will need to do

{5, 8, 3}

Variables needed:

120

Variables needed: array

Variables needed: array, position in array

-Position in the array changes over time

Variables needed: array, position in array, result

- -Like the position, the result changes over time
- -Only once we've completed going through the whole array is the result final

Example

- Product.java
- ProductTest.java

{ }

{ }

0

{ }

 $\left(\right)$

{2}

{ }

0

{2}

0 + 2

{ }

0

{2, 5}

$$0 + 2 + 5$$

{2, 5}

{2, 5}

{2, 5, 9}

ResultType result = initialResult;

⁻Initialize the result to some initial value

⁻For product, this is 1

⁻For sum, this is 0

```
ResultType result = initialResult;
for (int index = whereToStart;
```

⁻Start iterating through the array, starting from some starting position

⁻For product and sum, this starting position is 0 (the first index of the array)

```
ResultType result = initialResult;
for (int index = whereToStart;
   index < whereToEnd;</pre>
```

⁻Continue iterating until some stopping condition

⁻For both product and sum, this should be array.length

```
ResultType result = initialResult;
for (int index = whereToStart;
   index < whereToEnd;
   index++) {</pre>
```

⁻For each iteration, perform some computation involving the current element of the array (determined by both the array and whatever array index we are on), along with the current result

⁻For product, this is result *= array[index] (AKA result = result * array[index])