
COMP 110/L Lecture 15
Kyle Dewey

Outline

• Loops with arrays

Loops with Arrays

Loops with Arrays
Can iterate through arrays using loops

Loops with Arrays
Can iterate through arrays using loops

for (int x = 0; x < arr.length; x++) {
 System.out.println(x);
}

Loops with Arrays
Can iterate through arrays using loops

for (int x = 0; x < arr.length; x++) {
 System.out.println(x);
}

Not <=, since arrays start from 0

Example:
PrintArgs.java

Computing a Single Result
Common pattern: build a single result via iteration.

Update this result for each iteration.

Computing a Single Result
Common pattern: build a single result via iteration.

Update this result for each iteration.

Example: arithmetic product

-I’ll start with specific examples, then move on to generalizing this

Computing a Single Result
Common pattern: build a single result via iteration.

Update this result for each iteration.

Example: arithmetic product

{}

-First case: product of a list of no numbers

Computing a Single Result
Common pattern: build a single result via iteration.

Update this result for each iteration.

Example: arithmetic product

{}

1

-First case: product of a list of no numbers
-This is defined to be 1

Computing a Single Result
Common pattern: build a single result via iteration.

Update this result for each iteration.

Example: arithmetic product

{}

1

{5}

-Second case: product of a list containing a single number

Computing a Single Result
Common pattern: build a single result via iteration.

Update this result for each iteration.

Example: arithmetic product

{}

1

{5}

1 * 5

-Second case: product of a list containing a single number
-This is defined as 1 * that number, always yielding that number

Computing a Single Result
Common pattern: build a single result via iteration.

Update this result for each iteration.

Example: arithmetic product

{}

1

{5}

1 * 5

5

-Second case: product of a list containing a single number
-This is defined as 1 * that number, always yielding that number

Example: arithmetic product

Example: arithmetic product

{5, 8}

Example: arithmetic product

{5, 8}

1 * 5 * 8

Example: arithmetic product

{5, 8}

1 * 5 * 8

5

-Instead of doing all the multiplications at once, I’ll do them stepwise, which mirrors what
the code will need to do

Example: arithmetic product

{5, 8}

1 * 5 * 8

5

40

-Instead of doing all the multiplications at once, I’ll do them stepwise, which mirrors what
the code will need to do

Example: arithmetic product

Example: arithmetic product
{5, 8, 3}

Example: arithmetic product
{5, 8, 3}

1 * 5 * 8 * 3

Example: arithmetic product
{5, 8, 3}

1 * 5 * 8 * 3

5

Example: arithmetic product
{5, 8, 3}

1 * 5 * 8 * 3

5

40

Example: arithmetic product
{5, 8, 3}

1 * 5 * 8 * 3

5

40

120

In Code
{5, 8, 3}

1 * 5 * 8 * 3

5

40

120

Variables needed:

In Code
{5, 8, 3}

1 * 5 * 8 * 3

5

40

120

Variables needed: array

In Code
{5, 8, 3}

1 * 5 * 8 * 3

5

40

120

Variables needed: array, position in array

-Position in the array changes over time

In Code
{5, 8, 3}

1 * 5 * 8 * 3

5

40

120

Variables needed: array, position in array, result

-Like the position, the result changes over time
-Only once we’ve completed going through the whole array is the result final

Example

•Product.java

•ProductTest.java

Another example: arithmetic sum

Another example: arithmetic sum

{}

Another example: arithmetic sum

{}

0

Another example: arithmetic sum

{}

0

{2}

Another example: arithmetic sum

{}

0

{2}

0 + 2

Another example: arithmetic sum

{}

0

{2}

0 + 2

2

Another example: arithmetic sum

{2, 5}

Another example: arithmetic sum

{2, 5}

0 + 2 + 5

Another example: arithmetic sum

{2, 5}

0 + 2 + 5

2

Another example: arithmetic sum

{2, 5}

0 + 2 + 5

2

7

Another example: arithmetic sum

{2, 5, 9}

Another example: arithmetic sum

{2, 5, 9}

0 + 2 + 5 + 9

Another example: arithmetic sum

{2, 5, 9}

0 + 2 + 5 + 9

2

Another example: arithmetic sum

{2, 5, 9}

0 + 2 + 5 + 9

2

7

Another example: arithmetic sum

{2, 5, 9}

0 + 2 + 5 + 9

2

7

16

General Pattern

General Pattern

ResultType result = initialResult;

-Initialize the result to some initial value
-For product, this is 1
-For sum, this is 0

General Pattern

ResultType result = initialResult;
for (int index = whereToStart;

-Start iterating through the array, starting from some starting position
-For product and sum, this starting position is 0 (the first index of the array)

General Pattern

ResultType result = initialResult;
for (int index = whereToStart;
 index < whereToEnd;

-Continue iterating until some stopping condition
-For both product and sum, this should be array.length

General Pattern

ResultType result = initialResult;
for (int index = whereToStart;
 index < whereToEnd;
 index++) {

-Keep doing this iteration for every index of the array

General Pattern

ResultType result = initialResult;
for (int index = whereToStart;
 index < whereToEnd;
 index++) {
 result = oneStep(array[index],
 result);
}

-For each iteration, perform some computation involving the current element of the array
(determined by both the array and whatever array index we are on), along with the current
result
-For product, this is result *= array[index] (AKA result = result * array[index])

