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Outline

•String.length

•String.split

•Multidimensional arrays
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String.length
Returns the number of chars in the given String

“abc”.length()

3

“”.length()

0



Example:
StringLength.java



String.split
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String.split
Allows for a String to be separated into different parts.

Returns an array of Strings (String[]).

“foo,bar”.split(“,”)

new String[]{“foo”, “bar”}



Example: 
SplitOnComma.java
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What split Takes
split takes a regular expression.

Regular expressions describe different string patterns.

“foo,bar”.split(“,”)

“,”: matches only one pattern: a comma

“foo.bar”.split(“.”)

“.”: matches any single character

“foo.bar”.split(“\\.”)
“\\.”: matches a period (backslash followed by a period)



Example: 
SplitOnAnything.java



Regular Expressions

• Super popular for extracting values from 
String inputs

• Could easily spend a week on them

• Covered in later courses



Multidimensional Arrays



Recap - Arrays
Arrays are fixed-length sequences

of elements of the same type.



Recap - Arrays
Arrays are fixed-length sequences

of elements of the same type.

new char[]{‘a’, ‘b’, ‘c’}

new int[]{1, 2, 3}

new String[]{“foo”, “bar”}

new double[]{1.2, 3.4}
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Multidimensional Arrays
Java also allows us to make arrays of arrays.

These are often called multidimensional arrays.

new int[][]{ new int[]{1, 2, 3},
             new int[]{4, 5},
             new int[]{6},
             new int[0],
             new int[]{7, 8, 9} }

Corresponding type: int[][]

-”Multidimensional” because we need multiple dimensions to access any single element
-This is specifically a two-dimensional array, since we need two dimensions to access a 
single int (specifically a row and a column)
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Utility

Commonly used for representing tables
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Multidimensional Array 
Utility

Commonly used for representing tables

13 12 19

64 89 247

78 57 21

new int[][]{ new int[]{13, 12, 19},
             new int[]{64, 89, 247},
             new int[]{78, 57, 21} }
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Accessing Rows
One row of  a two-dimensional array is an array...

int[][] array = ...;
int[] row = array[0];

Accessing Columns
...and columns are individual elements of rows.

int[][] array = ...;
int[] row = array[0];
int columnElement = row[5];

int[][] array = ...;
int columnElement = array[0][5];

-Last box is shorthand for the second box: we can access a row and a column element in a 
single expression



Example:
AccessTwoDimensionalElement.java


