
COMP 110/L Lecture 17
Kyle Dewey

Outline

•String.length

•String.split

•Multidimensional arrays

String.length
Returns the number of chars in the given String

String.length
Returns the number of chars in the given String

“abc”.length()

String.length
Returns the number of chars in the given String

“abc”.length()

3

String.length
Returns the number of chars in the given String

“abc”.length()

3

“”.length()

String.length
Returns the number of chars in the given String

“abc”.length()

3

“”.length()

0

Example:
StringLength.java

String.split

String.split
Allows for a String to be separated into different parts.

Returns an array of Strings (String[]).

String.split
Allows for a String to be separated into different parts.

Returns an array of Strings (String[]).

“foo,bar”.split(“,”)

String.split
Allows for a String to be separated into different parts.

Returns an array of Strings (String[]).

“foo,bar”.split(“,”)

new String[]{“foo”, “bar”}

Example:
SplitOnComma.java

What split Takes
split takes a regular expression.

Regular expressions describe different string patterns.

What split Takes
split takes a regular expression.

Regular expressions describe different string patterns.

“foo,bar”.split(“,”)

What split Takes
split takes a regular expression.

Regular expressions describe different string patterns.

“foo,bar”.split(“,”)

“,”: matches only one pattern: a comma

What split Takes
split takes a regular expression.

Regular expressions describe different string patterns.

“foo,bar”.split(“,”)

“,”: matches only one pattern: a comma

“foo.bar”.split(“.”)

What split Takes
split takes a regular expression.

Regular expressions describe different string patterns.

“foo,bar”.split(“,”)

“,”: matches only one pattern: a comma

“foo.bar”.split(“.”)

“.”: matches any single character

What split Takes
split takes a regular expression.

Regular expressions describe different string patterns.

“foo,bar”.split(“,”)

“,”: matches only one pattern: a comma

“foo.bar”.split(“.”)

“.”: matches any single character

“foo.bar”.split(“\\.”)

What split Takes
split takes a regular expression.

Regular expressions describe different string patterns.

“foo,bar”.split(“,”)

“,”: matches only one pattern: a comma

“foo.bar”.split(“.”)

“.”: matches any single character

“foo.bar”.split(“\\.”)
“\\.”: matches a period (backslash followed by a period)

Example:
SplitOnAnything.java

Regular Expressions

• Super popular for extracting values from
String inputs

• Could easily spend a week on them

• Covered in later courses

Multidimensional Arrays

Recap - Arrays
Arrays are fixed-length sequences

of elements of the same type.

Recap - Arrays
Arrays are fixed-length sequences

of elements of the same type.

new char[]{‘a’, ‘b’, ‘c’}

new int[]{1, 2, 3}

new String[]{“foo”, “bar”}

new double[]{1.2, 3.4}

Multidimensional Arrays
Java also allows us to make arrays of arrays.

These are often called multidimensional arrays.

-”Multidimensional” because we need multiple dimensions to access any single element

Multidimensional Arrays
Java also allows us to make arrays of arrays.

These are often called multidimensional arrays.

new int[][]{ new int[]{1, 2, 3},
 new int[]{4, 5},
 new int[]{6},
 new int[0],
 new int[]{7, 8, 9} }

-”Multidimensional” because we need multiple dimensions to access any single element
-This is specifically a two-dimensional array, since we need two dimensions to access a
single int (specifically a row and a column)

Multidimensional Arrays
Java also allows us to make arrays of arrays.

These are often called multidimensional arrays.

new int[][]{ new int[]{1, 2, 3},
 new int[]{4, 5},
 new int[]{6},
 new int[0],
 new int[]{7, 8, 9} }

Corresponding type: int[][]

-”Multidimensional” because we need multiple dimensions to access any single element
-This is specifically a two-dimensional array, since we need two dimensions to access a
single int (specifically a row and a column)

Multidimensional Array
Utility

Commonly used for representing tables

Multidimensional Array
Utility

Commonly used for representing tables

13 12 19

64 89 247

78 57 21

Multidimensional Array
Utility

Commonly used for representing tables

13 12 19

64 89 247

78 57 21

new int[][]{ new int[]{13, 12, 19},
 new int[]{64, 89, 247},
 new int[]{78, 57, 21} }

Accessing Rows
One row of a two-dimensional array is an array...

Accessing Rows
One row of a two-dimensional array is an array...

int[][] array = ...;
int[] row = array[0];

Accessing Rows
One row of a two-dimensional array is an array...

int[][] array = ...;
int[] row = array[0];

Accessing Columns
...and columns are individual elements of rows.

Accessing Rows
One row of a two-dimensional array is an array...

int[][] array = ...;
int[] row = array[0];

Accessing Columns
...and columns are individual elements of rows.

int[][] array = ...;
int[] row = array[0];
int columnElement = row[5];

Accessing Rows
One row of a two-dimensional array is an array...

int[][] array = ...;
int[] row = array[0];

Accessing Columns
...and columns are individual elements of rows.

int[][] array = ...;
int[] row = array[0];
int columnElement = row[5];

int[][] array = ...;
int columnElement = array[0][5];

-Last box is shorthand for the second box: we can access a row and a column element in a
single expression

Example:
AccessTwoDimensionalElement.java

