
COMP 110/L Lecture 19
Kyle Dewey

Outline

• Inheritance

•extends

•super

• Method overriding

• Automatically-generated constructors

Inheritance

Recap

-We talked about object-oriented programming being about objects interacting with each
other in well-defined ways (i.e., through method calls)

Mammal

-Let’s say we have mammal objects...

Mammal

-Along with cat objects...

Mammal

-...and dog objects
-Clearly there is some connection between these, as cats and dogs are both mammals

Mammal

breathe

breathe

-Both cats and dogs breathe, but these aren’t actions which are unique to cats and dogs

Mammal

Inheritance

-Inheritance allows us to effectively say that cats and dogs are both mammals...

Mammal

Inheritance

breathe

-...and that mammals breathe
-Transitively, this means that cats and dogs both breathe, too
-The big advantage here code-wise is that we only need to define breathe once

extends

extends
States that a subclass inherits from a parent class

extends
States that a subclass inherits from a parent class

public class Mammal {
 ...
}

extends
States that a subclass inherits from a parent class

public class Mammal {
 ...
}

public class Cat extends Mammal {
 ...
}

extends
States that a subclass inherits from a parent class

public class Mammal {
 ...
}

public class Cat extends Mammal {
 ...
}

public class Dog extends Mammal {
 ...
}

super

super
Used to invoke the constructor of the parent class.
Another name for the parent class is the superclass.

super
Used to invoke the constructor of the parent class.
Another name for the parent class is the superclass.

public class BaseClass {
 public BaseClass(String s) {...}
}

super
Used to invoke the constructor of the parent class.
Another name for the parent class is the superclass.

public class BaseClass {
 public BaseClass(String s) {...}
}

public class Child extends BaseClass {
 public Child(String s) {
 super(s);
 }
}

Example

•Mammal.java

•Cat.java

•Dog.java

•MammalMain.java

Method Overriding

toString() Revisit

toString() Revisit
public String toString() {
 ...
}

-Back in lab 7, you had to define your own toString() method

toString() Revisit
public String toString() {
 ...
}

Rectangle(3, 4)

-If you defined it correctly, it would output something like this

toString() Revisit
public String toString() {
 ...
}

Rectangle(3, 4)

Rectangle@302b09c9

-If you defined it incorrectly, it would give you something like this

toString() Revisit
public String toString() {
 ...
}

Rectangle(3, 4)

Rectangle@302b09c9

Key point: even without toString()defined,
a String was still produced.

-If you defined it incorrectly, it would give you something like this

Base toString() Origin
• All classes inherit from Object,

even if you don’t explicitly say so

• Object defines its own toString()
that produces Rectangle@302b09c9

Base toString() Origin

public class Object {
 public String toString() { ... }
}

• All classes inherit from Object,
even if you don’t explicitly say so

• Object defines its own toString()
that produces Rectangle@302b09c9

-So somewhere in Java, there is a class definition like this

Base toString() Origin
• All classes inherit from Object,

even if you don’t explicitly say so

• Object defines its own toString()
that produces Rectangle@302b09c9

public class Object {
 public String toString() { ... }
}

public class Rectangle { ... }

-You defined your Rectangle class like this

Base toString() Origin
• All classes inherit from Object,

even if you don’t explicitly say so

• Object defines its own toString()
that produces Rectangle@302b09c9

public class Object {
 public String toString() { ... }
}

public class Rectangle { ... }

public class Rectangle extends Object {
 ...
}
-That code without the explicit extends Object is equivalent to code that does explicitly
extend Object
-This is how we end up with Object’s toString() method

Overriding Methods

• You can override a method definition in a
base class by defining a method with the
same signature in a subclass

• The method in the subclass will execute
instead of the method in the parent class

Overriding Methods

• You can override a method definition in a
base class by defining a method with the
same signature in a subclass

• The method in the subclass will execute
instead of the method in the parent class

public class Rectangle {
 public String toString() {
 ...
 }
}
-So when you were defining your toString()...

Overriding Methods

• You can override a method definition in a
base class by defining a method with the
same signature in a subclass

• The method in the subclass will execute
instead of the method in the parent class

public class Rectangle extends Object {
 public String toString() {
 ...
 }
}
-...you were actually overriding the toString() in Object, since Rectangle implicitly extends
from Object
-If you didn’t define the toString() method right (e.g., having the wrong signature), then you
don’t override Object’s toString(), and so you end up with Object’s (mostly useless) toString()
getting used instead of your own

Example

•OverrideBase.java

•OverrideSub.java

•OverrideMain.java

Automatically-
Generated

Constructors

Automatic Constructors
If you don’t define any constructors,

Java will define one for you which takes no arguments.

Automatic Constructors
If you don’t define any constructors,

Java will define one for you which takes no arguments.

public class MyClass {
}

-So if you write this code...

Automatic Constructors
If you don’t define any constructors,

Java will define one for you which takes no arguments.

public class MyClass {
}

public class MyClass {
 public MyClass() {}
}

-...you actually get this code
-The code itself isn’t written in the file, but it will behave as if it were written in the file

Example:
AutomaticConstructor.java

Automatic Constructors
This also applies to subclasses,

as long as the base class has a no-argument constructor

Automatic Constructors
This also applies to subclasses,

as long as the base class has a no-argument constructor

public class MyBase {}
public class MySub extends MyBase {}

-So if you were to write this code...

Automatic Constructors
This also applies to subclasses,

as long as the base class has a no-argument constructor

public class MyBase {
 public MyBase() {}
}

public class MySub extends MyBase {
 public MySub() { super(); }
}

public class MyBase {}
public class MySub extends MyBase {}

-...it’s actually equivalent to this code

Automatic Constructors
This also applies to subclasses,

as long as the base class has a no-argument
constructor

-If this doesn’t hold, then the code won’t compile

Automatic Constructors
This also applies to subclasses,

as long as the base class has a no-argument
constructor

public class MyBase {
 // explicit non-no-arg constructor
 // defined - no automatically
 // generated constructors
 public MyBase(int x) {}
}
public class MySub extends MyBase {}

-If this doesn’t hold, then the code won’t compile

Automatic Constructors
This also applies to subclasses,

as long as the base class has a no-argument
constructor

public class MyBase {
 // explicit non-no-arg constructor
 // defined - no automatically
 // generated constructors
 public MyBase(int x) {}
}
public class MySub extends MyBase {
 public MySub() { super(); }
}

-If this doesn’t hold, then the code won’t compile

Automatic Constructors
This also applies to subclasses,

as long as the base class has a no-argument
constructor

public class MyBase {
 // explicit non-no-arg constructor
 // defined - no automatically
 // generated constructors
 public MyBase(int x) {}
}
public class MySub extends MyBase {
 public MySub() { super(); }
}

Does not exist - code will not compile

-If this doesn’t hold, then the code won’t compile

