
COMP 110/L Lecture 21
Kyle Dewey

Outline

•this

•instanceof

• Casting

•equals()

•protected

•interface

this

this
Refers to whatever instance the given instance method is

called on.

this
Refers to whatever instance the given instance method is

called on.

public class Foo {
 public Foo returnMyself() {
 return this;
 }
}

Example:
ThisExample.java

Name Clashes
this can be used to refer to instance variables which have

the same name as normal variables

Name Clashes
this can be used to refer to instance variables which have

the same name as normal variables

public class NameClash {
 private int x;
 public NameClash(int x) {
 this.x = x;
 }
}

Example:
NameClash.java

instanceof

instanceof
Returns a boolean indicating if a given instance was made

from or inherited from a given class

instanceof
Returns a boolean indicating if a given instance was made

from or inherited from a given class

public class InstanceOf {
 public static void main(String[] a) {
 InstanceOf i = new InstanceOf();
 if (i instanceof InstanceOf &&
 i instanceof Object) {
 // code reaches this point
 }
 }
}

Example:
InstanceOfExample.java

Casting

Casting
Converts a value of one type into another.

Not always possible to perform.

Casting
Converts a value of one type into another.

Not always possible to perform.

int myInt0 = 16.0;

int myInt1 = (int)16.0;

// myInt2 gets set to 16
int myInt2 = (int)16.5;

Casting
Converts a value of one type into another.

Not always possible to perform.

int myInt0 = 16.0;

int myInt1 = (int)16.0;

// myInt2 gets set to 16
int myInt2 = (int)16.5;

Does not compile

Casting
Converts a value of one type into another.

Not always possible to perform.

int myInt0 = 16.0;

int myInt1 = (int)16.0;

// myInt2 gets set to 16
int myInt2 = (int)16.5;

Casting
Converts a value of one type into another.

Not always possible to perform.

int myInt0 = 16.0;

int myInt1 = (int)16.0;

// myInt2 gets set to 16
int myInt2 = (int)16.5;

myInt1 holds 16

Casting
Converts a value of one type into another.

Not always possible to perform.

int myInt0 = 16.0;

int myInt1 = (int)16.0;

int myInt2 = (int)16.5;

Casting
Converts a value of one type into another.

Not always possible to perform.

int myInt0 = 16.0;

int myInt1 = (int)16.0;

int myInt2 = (int)16.5;

myInt2 holds 16

Casting
Converts a value of one type into another.

Not always possible to perform.

Casting
Converts a value of one type into another.

Not always possible to perform.

public class Foo { ... }
...
Foo f = new Foo();

I define Foo and later on I make an instance of it

Casting
Converts a value of one type into another.

Not always possible to perform.

public class Foo { ... }
...
Foo f = new Foo();
Object o = f;

I can assign f to an Object, since Foo is an instance of Object

Casting
Converts a value of one type into another.

Not always possible to perform.

public class Foo { ... }
...
Foo f = new Foo();
Object o = f;
Foo g = o;

But if I try to assign an object to a Foo...

Casting
Converts a value of one type into another.

Not always possible to perform.

public class Foo { ... }
...
Foo f = new Foo();
Object o = f;
Foo g = o; Does not compile

...this fails to compile, because any arbitrary Object is not necessarily a Foo

Casting
Converts a value of one type into another.

Not always possible to perform.

public class Foo { ... }
...
Foo f = new Foo();
Object o = f;
Foo g = (Foo)o;

-If, however, we cast the object as a Foo...

Casting
Converts a value of one type into another.

Not always possible to perform.

public class Foo { ... }
...
Foo f = new Foo();
Object o = f;
Foo g = (Foo)o; Compiles and runs ok

-...this will work, because we have performed the cast
-The cast effectively tells Java “I know what I’m doing, and this Object is a Foo”

Casting
Converts a value of one type into another.

Not always possible to perform.

Casting
Converts a value of one type into another.

Not always possible to perform.

public class Foo { ... }
public class Bar { ... }
...

-Let’s define these two classes

Casting
Converts a value of one type into another.

Not always possible to perform.

public class Foo { ... }
public class Bar { ... }
...
Foo f = new Foo();
Bar b = new Bar();

...along with these two instances

Casting
Converts a value of one type into another.

Not always possible to perform.

public class Foo { ... }
public class Bar { ... }
...
Foo f = new Foo();
Bar b = new Bar();
f = b;

Casting
Converts a value of one type into another.

Not always possible to perform.

public class Foo { ... }
public class Bar { ... }
...
Foo f = new Foo();
Bar b = new Bar();
f = b; Does not compile

-Doesn’t compile, because a Bar is not a Foo

Casting
Converts a value of one type into another.

Not always possible to perform.

public class Foo { ... }
public class Bar { ... }
...
Foo f = new Foo();
Bar b = new Bar();
f = (Foo)b;

-If we instead try to cast it...

Casting
Converts a value of one type into another.

Not always possible to perform.

public class Foo { ... }
public class Bar { ... }
...
Foo f = new Foo();
Bar b = new Bar();
f = (Foo)b;

Compiles, but doesn’t run correctly
(gives a ClassCastException)

-If we instead try to cast it...

equals()

equals()
Used to determine if two arbitrary objects are equal.

Defined in Object.

equals()
Used to determine if two arbitrary objects are equal.

Defined in Object.

“foo”.equals(“foo”)

Returns true

equals()
Used to determine if two arbitrary objects are equal.

Defined in Object.

“foo”.equals(“foo”)

Returns true

“foo”.equals(“bar”)

equals()
Used to determine if two arbitrary objects are equal.

Defined in Object.

“foo”.equals(“foo”)

Returns true

“foo”.equals(“bar”)

Returns false

equals() vs. ==

• With equals(), we test object equality,
AKA deep equality

• Look at the inside of the object

• With ==, we test reference equality, AKA
shallow equality

• Return true if two references refer to
the exact same object

Example:
StringEquals.java

-This example shows off the difference between reference and object equality

Defining Your Own
equals()

• Usual pattern: see if the given thing is an
instance of my class

• If true, cast it to the class, and do
some deep comparisons

• If false, return false

• Anything is possible

Example:
CustomEquals.java

protected

protected
Somewhere between private and public.

Like private, but subclasses can access it.

protected
Somewhere between private and public.

Like private, but subclasses can access it.

public class HasPrivate {
 private int x;
}

protected
Somewhere between private and public.

Like private, but subclasses can access it.

public class HasPrivate {
 private int x;
}
public class Sub extends HasPrivate {
 ...x...
}

protected
Somewhere between private and public.

Like private, but subclasses can access it.

public class HasPrivate {
 private int x;
}
public class Sub extends HasPrivate {
 ...x...
}

Not permitted - x is private in HasPrivate

protected
Somewhere between private and public.

Like private, but subclasses can access it.

public class HasPrivate {
 private int x;
}
public class Sub extends HasPrivate {
 ...x...
}
public class HasProt {
 protected int x;
}
public class Sub extends HasProt {
 ...x...
}

protected
Somewhere between private and public.

Like private, but subclasses can access it.

public class HasPrivate {
 private int x;
}
public class Sub extends HasPrivate {
 ...x...
}
public class HasProt {
 protected int x;
}
public class Sub extends HasProt {
 ...x...
}

OK: Sub is a subclass of HasProt

interface

Mammal breathe

-We had this setup before

Animal

breathe Mammal

-Restructure: add Animal, birds, and spiders

Animal

breathe Mammal

-Restructure: add Animal, birds, and spiders

Animal

breathe Mammal

-Restructure: add Animal, birds, and spiders
-Now we have a problem: birds breathe too, but they aren’t mammals
-The property of breathing is not unique to mammals
-Potential solution: restructure things to add BreathingAnimals in between Animal and
Mammal; have Birds inherit from BreathingAnimals but not Mammal.
-That solution is specific to this case; doesn’t work in general

interface

• Like an abstract class with the following
restrictions:

• Cannot have constructors

• Cannot have instance variables

• However, we can inherit from them
anywhere, and we can inherit from multiple
interfaces

Using interfaces

public interface CanBreathe {
 public void breathe();
}

-We can define an interface like so...

Using interfaces

public interface CanBreathe {
 public void breathe();
}

public class Foo extends Bar
implements CanBreathe {
 public void breathe() { ... }
}

-And implement it like this
-We can extend a class along with implementing an interface

Using interfaces

public interface CanBreathe {
 public void breathe();
}

public class Foo extends Bar
implements CanBreathe {
 public void breathe() { ... }
}

public class Multi extends Alpha
implements Beta, Gamma, Delta { ... }

-Can inherit from multiple interfaces, separated with commas

Example
•Animal.java

•CanBreathe.java

•Mammal.java

•Dog.java

•Cat.java

•CanFly.java

•Parrot.java

•Bat.java

•Spider.java

•AnimalMain.java

