
COMP 110/L Lecture 23
Kyle Dewey

Outline

• Reading from files

• Writing to files

•finally

Reading From Files

Motivation
Files act like very large inputs; basis for most things.

Motivation
Files act like very large inputs; basis for most things.

-When you “access” a web page, you’re really downloading a HTML file, and subsequently
reading the file

Motivation
Files act like very large inputs; basis for most things.

public class MyClass {
 ...
}

-When you write code, the Java compiler will read it from the file.

Reading from Files

Reading from Files

myFile.txt

one
two
three

myFile.txt
Contents

-On disk somewhere, I have the file myFile.txt

Reading from Files

myFile.txt
Open File

one
two
three

myFile.txt
Contents

-On disk somewhere, I have the file myFile.txt

Reading from Files

myFile.txt
Open File

Filehandle

one
two
three

myFile.txt
Contents

-Opening a file creates a “filehandle”, that is, a handle on the open file.
-We call it a “handle” in much the same way as a pan has a handle - this is how to hold the
pan (file) and manipulate the pan (file)

Reading from Files

myFile.txt
Open File

Filehandle

one
two
three

myFile.txt
Contents

-The filehandle keeps track of where we are in the file
-Initially, we are right at the start of the file

Reading from Files

myFile.txt
Open File

Filehandle

one
two
three

myFile.txt
Contents

Read from Filehandle

-We can then read from the filehandle

Reading from Files

myFile.txt
Open File

Filehandle

one
two
three

myFile.txt
Contents

Read from Filehandle

one

-When we read from a filehandle, we get whatever is where the file pointer (the red arrow) is
-The file pointer is updated to point to the next position in the file

Reading from Files

myFile.txt
Open File

Filehandle

one
two
three

myFile.txt
Contents

Read from Filehandle

-We can then read again...

Reading from Files

myFile.txt
Open File

Filehandle

one
two
three

myFile.txt
Contents

Read from Filehandle

two

-...resulting in the next value read from the file
-The file pointer (red arrow) is updated as before

Reading from Files

myFile.txt
Open File

Filehandle

one
two
three

myFile.txt
Contents

Read from Filehandle

-We can read again...

Reading from Files

myFile.txt
Open File

Filehandle

one
two
three

myFile.txt
Contents

Read from Filehandle

three

-...and we get the next thing with a file pointer update, as before

Reading from Files

myFile.txt
Open File

Filehandle

one
two
three

myFile.txt
Contents

Close Filehandle

-The last thing we do is close the filehandle when we are done with it

Reading from Files

myFile.txt
Open File

Filehandle

one
two
three

myFile.txt
Contents

Close Filehandle

-Closing the filehandle doesn’t visibly _do_ anything
-Internally, the file is no longer opened, and we no longer keep track of where we were in the
file
-The underlying operating system puts a limit on how many files we can have open at once,
so it’s important to close a file when we’re done with it.

Reading from Files
with Scanner

Reading from Files
with Scanner

Step 1: Create File object

Reading from Files
with Scanner

Step 1: Create File object

File myFile = new File(“myFile.txt”);

Reading from Files
with Scanner

Step 1: Create File object

File myFile = new File(“myFile.txt”);

Step 2: Create Scanner object with the File object

Reading from Files
with Scanner

Step 1: Create File object

File myFile = new File(“myFile.txt”);

Step 2: Create Scanner object with the File object

Scanner input = new Scanner(myFile);

Reading from Files
with Scanner

Step 1: Create File object

File myFile = new File(“myFile.txt”);

Step 2: Create Scanner object with the File object

Scanner input = new Scanner(myFile);

Step 3: Read from Scanner object

Reading from Files
with Scanner

Step 1: Create File object

File myFile = new File(“myFile.txt”);

Step 2: Create Scanner object with the File object

Scanner input = new Scanner(myFile);

Step 3: Read from Scanner object
if (input.hasNextLine()) {
 String line = input.nextLine();
 ...

Reading from Files
with Scanner
Step 4: Close Scanner object

Reading from Files
with Scanner
Step 4: Close Scanner object

input.close();

Example:
ReadFirstLine.java

Example:
ReadWholeFile.java

FileNotFoundException
Scanner’s constructor will throw a

FileNotFoundException if the file does not exist.

FileNotFoundException
Scanner’s constructor will throw a

FileNotFoundException if the file does not exist.

Example:
ReadWholeFileWithTry.java

Writing to Files

Writing to Files

-Same step as with reading files

Writing to Files
Step 1: Create a File object

File myFile = new File(“myFile.txt”);

-Same step as with reading files

Writing to Files
Step 1: Create a File object

File myFile = new File(“myFile.txt”);

Step 2: Create a FileWriter object

FileWriter fw = new FileWriter(myFile);

-Same step as with reading files

Writing to Files
Step 1: Create a File object

File myFile = new File(“myFile.txt”);

Step 2: Create a FileWriter object

FileWriter fw = new FileWriter(myFile);

Step 3: Create a BufferedWriter object
BufferedWriter bw =
 new BufferedWriter(fw);

-Same step as with reading files

Writing to Files
Step 4: Write to BufferedWriter object as needed

bw.write(“Hello”);
bw.newLine();
bw.write(“World”);
bw.newLine();

-Same step as with reading files

Writing to Files
Step 4: Write to BufferedWriter object as needed

bw.write(“Hello”);
bw.newLine();
bw.write(“World”);
bw.newLine();

Step 5: Close the BufferedWriter object

bw.close();

-Same step as with reading files

Example:
WriteStrings.java

BufferedWriter
Observation: PrintWriter seems to do

everything BufferedWriter does, so why is
BufferedWriter needed?

BufferedWriter
Observation: PrintWriter seems to do

everything BufferedWriter does, so why is
BufferedWriter needed?

• Acts as a buffer

• Layer between us saying write and
the actual writing to the file

• Repeated short writes to files is slow

• Buffering idea: collect “writes” together in
memory, then write to file all at once

-BufferedWriter transparently collects these writes in memory, and will write to the file when
the space in memory is full.

finally

Motivation
Sometimes we want to perform an action,
 whether or not an exception is thrown.

Motivation
Sometimes we want to perform an action,
 whether or not an exception is thrown.

try {
 maybeThrowException();
 maybeDoThis();
} catch (SomeException e) {
 maybeDoThat();
} finally {
 alwaysDoThis();
}
maybeDoTheOtherThing();

-In the code above, the only thing guaranteed to always run is maybeThrowException (which
might end early if it throws an exception), and alwaysDoThis.
-maybeDoThis will get skipped if maybeThrowException throws an exception
-maybeDoThat will get skipped if the body of the try does not throw a SomeException
-maybeDoTheOtherThing will get skipped if the body of the try throws an exception that isn’t
a SomeException, or if maybeDoThat throws an exception

Example:
FinallyExample.java

Common Use

• finally is often used to make sure a file
was closed, even if an exception was thrown
while manipulating the file

• WriteStrings.java will not do this

• See WriteStringsFinally.java

