
COMP 110/L Lecture 5
Kyle Dewey

Outlines

• Methods

• Defining methods

• Calling methods

Methods

Motivation

Motivation

Program

Input

Output
-Start off with some high-level motivation
-You write your program, and it’s one giant block
-This is difficult to reason about

Subprogram 1

Input

Subprogram 2

Subprogram 3

Motivation

Subprogram 4 Output

-Simpler approach: write a bunch of smaller programs, and stitch them together
-Each program is a lot easier to reason about than the one big program
-If we’re careful about how these different pieces interact with each other, then we only ever
have to think about the small programs

Code Reuse

Code Reuse

System.out.println(...)

-You’re already familiar with these

Code Reuse

System.out.println(...)
nextInt()

-You’re already familiar with these

Code Reuse

System.out.println(...)
nextInt()
nextLong()

-You’re already familiar with these

Code Reuse

System.out.println(...)
nextInt()
nextLong()

nextDouble()

-You’re already familiar with these

Code Reuse

System.out.println(...)
nextInt()
nextLong()

nextDouble()

You have used all of these multiple times.

-You’re already familiar with these, and you’ve used them a bunch of times

Code Reuse

System.out.println(...)
nextInt()
nextLong()

nextDouble()

You have used all of these multiple times.
These are all methods.

-You’re already familiar with these, and you’ve used them a bunch of times

Methods
Distinct subprograms.

Methods
Distinct subprograms.

Subprogram 1

Input

Subprogram 2

Subprogram 3

Subprogram 4 Output
-Taking that illustration from before...

Methods
Distinct subprograms.

Method 1

Input

Method 2

Method 3

Method 4 Output
-...each one of those subprograms is a method

Method Terminology

• We can define a method

• Make it available to the rest of the
program

• We can call a method

• Execute the subprogram

Method Anatomy
Methods take some number of inputs (can be 0).

Methods may produce an output.

Method Anatomy
Methods take some number of inputs (can be 0).

Methods may produce an output.

MethodInput? Output?

Method Anatomy
Methods take some number of inputs (can be 0).

Methods may produce an output.

MethodInput? Output?

System.out.println(“Hello”);

Method Anatomy
Methods take some number of inputs (can be 0).

Methods may produce an output.

MethodInput? Output?

System.out.println(“Hello”);

One input, no outputs (cannot assign to a variable).

Method Anatomy
Methods take some number of inputs (can be 0).

Methods may produce an output.

MethodInput? Output?

System.out.println(“Hello”);

One input, no outputs (cannot assign to a variable).

Math.pow(2, 3);

Method Anatomy
Methods take some number of inputs (can be 0).

Methods may produce an output.

MethodInput? Output?

System.out.println(“Hello”);

One input, no outputs (cannot assign to a variable).

Math.pow(2, 3);
Two inputs, one output.

inputScanner.nextInt();

inputScanner.nextInt();

No inputs, one output.

inputScanner.nextInt();

No inputs, one output.

System.out.print(“Goodbye”);

inputScanner.nextInt();

No inputs, one output.

System.out.print(“Goodbye”);

One input, no outputs (cannot assign to a variable)

inputScanner.nextInt();

No inputs, one output.

System.out.print(“Goodbye”);

One input, no outputs (cannot assign to a variable)

inputScanner.nextLong();

inputScanner.nextInt();

No inputs, one output.

System.out.print(“Goodbye”);

One input, no outputs (cannot assign to a variable)

inputScanner.nextLong();

No inputs, one output.

inputScanner.nextInt();

No inputs, one output.

System.out.print(“Goodbye”);

One input, no outputs (cannot assign to a variable)

inputScanner.nextLong();

No inputs, one output.

inputScanner.nextDouble();

inputScanner.nextInt();

No inputs, one output.

System.out.print(“Goodbye”);

One input, no outputs (cannot assign to a variable)

inputScanner.nextLong();

No inputs, one output.

inputScanner.nextDouble();

No inputs, one output.

Calling Methods

• Execution enters the method calls

• The method is executed

• The method returns to wherever it was
called from

Calling Methods

• Execution enters the method calls

• The method is executed

• The method returns to wherever it was
called from

Method 1 Method 2

Calling Methods

• Execution enters the method calls

• The method is executed

• The method returns to wherever it was
called from

Method 1 Method 2

Execution

-Initially, execution is in method 1

Calling Methods

• Execution enters the method calls

• The method is executed

• The method returns to wherever it was
called from

Method 1 Method 2

Calls
Execution

-Method 1 then calls method 2

Calling Methods

• Execution enters the method calls

• The method is executed

• The method returns to wherever it was
called from

Method 1 Method 2

Calls
Execution

-Execution transfers to method 2 as a result of the call

Calling Methods

• Execution enters the method calls

• The method is executed

• The method returns to wherever it was
called from

Method 1 Method 2

Calls
Execution

Returns

-Method 2 eventually completes, returning back to method 1

Calling Methods

• Execution enters the method calls

• The method is executed

• The method returns to wherever it was
called from

Method 1 Method 2

Calls
Execution

Returns

-Once the return is complete, execution resumes back in method 1 wherever it left off

Defining a Method
Easiest to see with real code.

Example:
Return42.java

-The `return` reserved word says that the method should end and return with a given value
at this point

Method Parameters
Parameters are passed on a call,

copying their values into the called method.

Method Parameters
Parameters are passed on a call,

copying their values into the called method.

public static int foo(int x) {
 return x + 1;
}

-For example, let’s take this method

Method Parameters
Parameters are passed on a call,

copying their values into the called method.

int a = foo(7);

public static int foo(int x) {
 return x + 1;
}

-We later call this method with parameter 7

Method Parameters
Parameters are passed on a call,

copying their values into the called method.

int a = foo(7);

public static int foo(int x) {
 return x + 1;
}

-Execution then goes into the foo method...

Method Parameters
Parameters are passed on a call,

copying their values into the called method.

int a = foo(7);

x = 7
public static int foo(int x) {
 return x + 1;
}

-...with x holding the value 7

Method Parameters
Parameters are passed on a call,

copying their values into the called method.

int a = foo(7);

x = 7
public static int foo(int x) {
 return x + 1;
}

-From here, x is returned (which still holds 7)...

Method Parameters
Parameters are passed on a call,

copying their values into the called method.

int a = foo(7);

x = 7
public static int foo(int x) {
 return x + 1;
}

-...and we return the returned value wherever we were originally called from
-Phrased another way, we resume execution from where the call started

Method Parameters
Parameters are passed on a call,

copying their values into the called method.

int a = foo(7);

x = 7
public static int foo(int x) {
 return x + 1;
}

8

-The whole method call acts as a single expression, and the value of the method call
expression is whatever the method returned

Example:
ReturnParameter.java

Example:
MultParameters1.java

Example:
MultParameters2.java

Example:
MultParameters3.java

Method Definition
General Form

public static
returnType
methodName(parameter_list) {
 ...
 return expression;
}

Method Definition
General Form

public static
returnType
methodName(parameter_list) {
 ...
 return expression;
}

Magic

Method Definition
General Form

public static
returnType
methodName(parameter_list) {
 ...
 return expression;
}

Magic

Type of value produced

Method Definition
General Form

public static
returnType
methodName(parameter_list) {
 ...
 return expression;
}

Magic

Type of value produced

Name given to
method; same naming

rules as variables

Method Definition
General Form

public static
returnType
methodName(parameter_list) {
 ...
 return expression;
}

Magic

Type of value produced

Name given to
method; same naming

rules as variables

Inputs to
method
(int x)

Method Definition
General Form

public static
returnType
methodName(parameter_list) {
 ...
 return expression;
}

Magic

Type of value produced

Name given to
method; same naming

rules as variables

Inputs to
method
(int x)Method ends

here, evaluates
expression, and
produces its result

Methods which
Produce no Values
Methods which produce no values

have a void return type

Example:
ReturnNothing.java

Aside: Expressions vs.
Statements

• Expressions return values (e.g., 1 + 2)

• Statements do not return values (e.g.,
System.out.println(“Hello”))

• Statements are separated with semicolon (;)

System.out.println(“Hello”);
System.out.println(“Goodbye”);

main Method
main is just another method.

main serves as the entry point to your program.

main Method
main is just another method.

main serves as the entry point to your program.

public static
void
main(String[] args) {
 ...
}

-main’s return type is void - it produces no value (doesn’t return anything)
-String[] is actually a type, so args is a parameter
-Later on we’ll get into what the type `String[]` is (not the same as just String), along with
what this parameter to main holds

