
COMP 110/L Lecture 12
Kyle Dewey

Outline

•switch

switch

Problem
if is verbose when checking many conditions.

Problem
if is verbose when checking many conditions.

if (x == 5) {
 return “foo”;
} else if (x == 6) {
 return “bar”;
} else if (x == 7) {
 return “baz”;
} else if (x == 8) {
 return “blah”;
} else {
 return “unknown”;
}

Enter switch
switch allows for multiple == conditions to be checked

if (x == 5) {
 return “foo”;
} else if (x == 6) {
 return “bar”;
} else if (x == 7) {
 return “baz”;
} else if (x == 8) {
 return “blah”;
} else {
 return “unknown”;
}

Enter switch
switch allows for multiple == conditions to be checked

if (x == 5) {
 return “foo”;
} else if (x == 6) {
 return “bar”;
} else if (x == 7) {
 return “baz”;
} else if (x == 8) {
 return “blah”;
} else {
 return “unknown”;
}

switch (x) {
case 5:
 return “foo”;
case 6:
 return “bar”;
case 7:
 return “baz”;
case 8:
 return “blah”;
default:
 return “unknown”;
}

Example:
SwitchBasic.java

switch Semantics
• Look at the thing you’re switching on

• Jump to the applicable case

• Keep running statements until something stops you

switch Semantics
• Look at the thing you’re switching on

• Jump to the applicable case

• Keep running statements until something stops you

switch (x) {
case 1:
 return “hi”;
case 2:
 System.out.println(“bye”);
default:
 System.out.println(“huh”);
}

switch Semantics
• Look at the thing you’re switching on

• Jump to the applicable case

• Keep running statements until something stops you

switch (1) {
case 1:
 return “hi”;
case 2:
 System.out.println(“bye”);
default:
 System.out.println(“huh”);
}

-If the value we switch on is 1...

switch Semantics
• Look at the thing you’re switching on

• Jump to the applicable case

• Keep running statements until something stops you

switch (1) {
case 1:
 return “hi”;
case 2:
 System.out.println(“bye”);
default:
 System.out.println(“huh”);
}

-...then jump to case 1...

switch Semantics
• Look at the thing you’re switching on

• Jump to the applicable case

• Keep running statements until something stops you

switch (1) {
case 1:
 return “hi”;
case 2:
 System.out.println(“bye”);
default:
 System.out.println(“huh”);
}

-...and start executing statements from this point.

switch Semantics
• Look at the thing you’re switching on

• Jump to the applicable case

• Keep running statements until something stops you

switch (1) {
case 1:
 return “hi”;
case 2:
 System.out.println(“bye”);
default:
 System.out.println(“huh”);
}

-In this case, because it’s a return, execution stops here (returning to whoever called this)

switch Semantics
• Look at the thing you’re switching on

• Jump to the applicable case

• Keep running statements until something stops you

switch (3) {
case 1:
 return “hi”;
case 2:
 System.out.println(“bye”);
default:
 System.out.println(“huh”);
}

-If the value we switch on is 3...

switch Semantics
• Look at the thing you’re switching on

• Jump to the applicable case

• Keep running statements until something stops you

switch (3) {
case 1:
 return “hi”;
case 2:
 System.out.println(“bye”);
default:
 System.out.println(“huh”);
}

-...then we jump to the default case, as there is no case for 3

switch Semantics
• Look at the thing you’re switching on

• Jump to the applicable case

• Keep running statements until something stops you

switch (3) {
case 1:
 return “hi”;
case 2:
 System.out.println(“bye”);
default:
 System.out.println(“huh”);
}

-We would then print out “huh”...

switch Semantics
• Look at the thing you’re switching on

• Jump to the applicable case

• Keep running statements until something stops you

switch (3) {
case 1:
 return “hi”;
case 2:
 System.out.println(“bye”);
default:
 System.out.println(“huh”);
}

-...and then simply trail out of the switch statement
-Whichever statement follows the switch would be executed, just as with if

switch Semantics
• Look at the thing you’re switching on

• Jump to the applicable case

• Keep running statements until something stops you

switch (2) {
case 1:
 return “hi”;
case 2:
 System.out.println(“bye”);
default:
 System.out.println(“huh”);
}

-If the value we switch on is 2...

switch Semantics
• Look at the thing you’re switching on

• Jump to the applicable case

• Keep running statements until something stops you

switch (2) {
case 1:
 return “hi”;
case 2:
 System.out.println(“bye”);
default:
 System.out.println(“huh”);
}

-...then we jump to the case for 2...

switch Semantics
• Look at the thing you’re switching on

• Jump to the applicable case

• Keep running statements until something stops you

switch (2) {
case 1:
 return “hi”;
case 2:
 System.out.println(“bye”);
default:
 System.out.println(“huh”);
}

-...and then start executing subsequent statements.
-We’d first print “bye”...

switch Semantics
• Look at the thing you’re switching on

• Jump to the applicable case

• Keep running statements until something stops you

switch (2) {
case 1:
 return “hi”;
case 2:
 System.out.println(“bye”);
default:
 System.out.println(“huh”);
}

-...but because nothing stopped us, we’d go to the next statement.
-In this case, this would mean we’d also print “huh”...

switch Semantics
• Look at the thing you’re switching on

• Jump to the applicable case

• Keep running statements until something stops you

switch (2) {
case 1:
 return “hi”;
case 2:
 System.out.println(“bye”);
default:
 System.out.println(“huh”);
}

-...and then would trail out of the switch, just as before

Example:
SwitchFallthrough.java

Preventing “fall-through”
The break statement will exit out of a switch.

Preventing “fall-through”
The break statement will exit out of a switch.

switch (x) {
case 1:
 return “hi”;
case 2:
 System.out.println(“bye”);
default:
 System.out.println(“huh”);
}

-If I take the switch from before...

Preventing “fall-through”
The break statement will exit out of a switch.

switch (x) {
case 1:
 return “hi”;
case 2:
 System.out.println(“bye”);
 break;
default:
 System.out.println(“huh”);
}

-...and then throw a break in...

Preventing “fall-through”
The break statement will exit out of a switch.

switch (2) {
case 1:
 return “hi”;
case 2:
 System.out.println(“bye”);
 break;
default:
 System.out.println(“huh”);
}

-...this now behaves differently on case 2

Preventing “fall-through”
The break statement will exit out of a switch.

switch (2) {
case 1:
 return “hi”;
case 2:
 System.out.println(“bye”);
 break;
default:
 System.out.println(“huh”);
}

-We’d still jump to the case 2...

Preventing “fall-through”
The break statement will exit out of a switch.

switch (2) {
case 1:
 return “hi”;
case 2:
 System.out.println(“bye”);
 break;
default:
 System.out.println(“huh”);
}

-We’d still execute the subsequent statement (printing “bye”)...

Preventing “fall-through”
The break statement will exit out of a switch.

switch (2) {
case 1:
 return “hi”;
case 2:
 System.out.println(“bye”);
 break;
default:
 System.out.println(“huh”);
}

-...but when we reach the break, we exit out of the switch

Preventing “fall-through”
The break statement will exit out of a switch.

switch (2) {
case 1:
 return “hi”;
case 2:
 System.out.println(“bye”);
 break;
default:
 System.out.println(“huh”);
}

-...but when we reach the break, we exit out of the switch
-End result: “bye” is printed, but not “huh”

Example:
SwitchBreak.java

switch and Testing
Each case is a test candidate, as is default.

switch and Testing
Each case is a test candidate, as is default.

int result = 0;
switch (input) {
case 1:
 result = result + 2;
case 2:
 result = result + 5;
default:
 result = result + 12;
}

switch and Testing
Each case is a test candidate, as is default.

int result = 0;
switch (input) {
case 1:
 result = result + 2;
case 2:
 result = result + 5;
default:
 result = result + 12;
}

1

switch and Testing
Each case is a test candidate, as is default.

int result = 0;
switch (input) {
case 1:
 result = result + 2;
case 2:
 result = result + 5;
default:
 result = result + 12;
}

1

2

switch and Testing
Each case is a test candidate, as is default.

int result = 0;
switch (input) {
case 1:
 result = result + 2;
case 2:
 result = result + 5;
default:
 result = result + 12;
}

1

2

3

