
COMP 122/L Lecture 1
Kyle Dewey

About Me

• I research automated testing techniques
and their intersection with CS education

• This is my first semester at CSUN

• Third time teaching this content

About this Class

• See something wrong? Want something
improved? Email me about it!
(kyle.dewey@csun.edu)

• I generally operate based on feedback

mailto:kyle.dewey@csun.edu
mailto:kyle.dewey@csun.edu

Bad Feedback

• This guy sucks.

• This class is boring.

• This material is useless.

-I can’t do anything in response to this

Good Feedback

• This guy sucks, I can’t read his writing.

• This class is boring, it’s way too slow.

• This material is useless, I don’t see how it
relates to anything in reality.

• I can’t fix anything if I don’t know what’s
wrong

-I can actually do something about this!

Class Motivation

public static void
main(String[] args) {
 ...
}

-I just want to write my code

public static void
main(String[] args) {
 ...
}

-Image source: http://media.firebox.com/pic/p5294_column_grid_12.jpg
-Have some magic happen

3.14956

public static void
main(String[] args) {
 ...
}

-Image source: http://media.firebox.com/pic/p5294_column_grid_12.jpg
-And then get a result

3.14956

public static void
main(String[] args) {
 ...
}

-Image source: http://dnr.wi.gov/eek/critter/reptile/images/turtleMidlandPainted.jpg
-But what if your magic isn’t working fast enough?

3.14956

More Efficient
Algorithms

public static void
main(String[] args) {
 ...
}

-Image source: http://dnr.wi.gov/eek/critter/reptile/images/turtleMidlandPainted.jpg
-Let’s apply some better algorithms, improve time complexity, and so on...

3.14956

More Efficient
Algorithms

public static void
main(String[] args) {
 ...
}

-Image source: http://turtlefeed.tumblr.com/post/35444735335/ive-lost-track-of-how-
many-turtle-on-skateboard
-...and we’re left with a slightly faster turtle

Why are things still
slow?

The magic box isn’t so
magic

Array Access

• Constant time! (O(1))

• Where the random in random access
memory comes from!

arr[x]

Array Access

• Constant time! (O(1))

• Where the random in random access
memory comes from!

arr[x]

-Image source: http://blog.fractureme.com/wp-content/uploads/2014/12/dwight-schrute-
false-288x300.jpg

Array Access

• Memory is loaded as chunks into caches

• Cache access is much faster (e.g., 10x)

• Iterating through an array is fast

• Jumping around any which way is slow

• Can make code exponentially faster

-Matrix multiply is the example at the end. If you take the graduate-level parallel
programming course, you’ll watch a matrix multiply program seemingly nonsensically get
around 5-6X faster by using a memory layout which looks asinine, but processors love

Instruction Ordering

int x = a + b;
int y = c * d;
int z = e - f;

int z = e - f;
int y = c * d;
int x = a + b;

-Two code snippets that appear to do the exact same thing
-Both should take the same amount of time, right?

Instruction Ordering

int x = a + b;
int y = c * d;
int z = e - f;

int z = e - f;
int y = c * d;
int x = a + b;

3 Milliseconds? 3 Milliseconds?

-Two code snippets that appear to do the exact same thing
-Both should take the same amount of time, right?

Instruction Ordering

int x = a + b;
int y = c * d;
int z = e - f;

int z = e - f;
int y = c * d;
int x = a + b;

3 Milliseconds? 3 Milliseconds?

-Image source: http://www.dreamstime.com/stock-photo-nope-word-typed-scrap-torn-
paper-pinned-to-cork-notice-board-word-well-known-meme-modern-slang-
image43914016

Instruction Ordering
• Modern processors are pipelined, and can

execute sub-portions of instructions in
parallel

• Depends on when instructions are
encountered

• Some can execute whole instructions in
different orders

• If your processor is from Intel, it is insane.

The Point
• If you really want performance, you need to

know how the magic works

• “But it scales!” - empirically, probably not

• Chrome is fast for a reason

• If you want to write a naive compiler, you need
to know some low-level details

• If you want to write a fast compiler, you need
to know tons of low-level details

-A bunch of Chrome is written using low-level machine instructions (assembly)
-Ruby on Rails is horrendously slow, and is built on the idea of scaling up. A startup I know
of beat a 50 node Rails cluster using one machine. Even in more typical settings, typically it’s
something like 10 Rails nodes to one optimized node. Twitter used to run Rails, but found
that it was too slow to handle the sort of scale that it handles now.

So Why Circuits?

-Image source: http://media.firebox.com/pic/p5294_column_grid_12.jpg
-It’s to turn this

So Why Circuits?

-Image source: https://en.wikipedia.org/wiki/MIPS_instruction_set#/media/
File:MIPS_Architecture_%28Pipelined%29.svg
-...into this

• Basically, circuits are the programming
language of hardware

• Yes, everything goes back to physics

So Why Circuits?

Overall Course
Structure

Syllabus

Working with Different
Bases

What’s In a Number?

• Question: why exactly does 123 have the
value 123? As in, what does it mean?

-Not a philosophy question
-This is actually kind of brain-melting, but once this is understood everything else becomes
second-nature

What’s In a Number?

123

-Start with 123

What’s In a Number?

321

-Break it down into its separate digits

What’s In a Number?

321

OnesTensHundreds

-Values of each digit

What’s In a Number?

321

OnesTensHundreds

100 10 10 1 1 1

-Values of each digit

Question
• Why did we go to tens? Hundreds?

321

OnesTensHundreds

100 10 10 1 1 1

Answer
• Because we are in decimal (base 10)

321

OnesTensHundreds

100 10 10 1 1 1

Another View

123

Another View

321

-Break it down into its separate digits

Another View

321

3 x 1002 x 1011 x 102

-Values of each digit

Conversion from Some
Base to Decimal

• Involves repeated division by the value of
the base

• From right to left: list the remainders

• Continue until 0 is reached

• Final value is result of reading
remainders from bottom to top

• For example: what is 231 decimal to
decimal?

Conversion from Some
Base to Decimal

231

Conversion from Some
Base to Decimal

231
23

Remainder

1
10

Conversion from Some
Base to Decimal

231
23

Remainder

1
10
10

2 3

Conversion from Some
Base to Decimal

231
23

Remainder

1
10
10

2 310
0 2

-Final value: 231 (reading remainders from bottom to top)

Now for Binary

• Binary is base 2

• Useful because circuits are either on or off,
representable as two states, 0 and 1

Now for Binary

1010

Now for Binary

1 0 1 0

Now for Binary

1 0 1 0

OnesTwosFoursEights

Now for Binary

1 0 1 0

OnesTwosFoursEights

0 x 201 x 210 x 221 x 23

8 20 0

Question

• What is binary 0101 as a decimal number?

Answer
• What is binary 0101 as a decimal number?

• 5

0 1 0 1

OnesTwosFoursEights

1 x 200 x 211 x 220 x 23

0 04 1

From Decimal to Binary

• What is decimal 57 to binary?

From Decimal to Binary

57

From Decimal to Binary

57
28

Remainder

1
2

From Decimal to Binary

57
28

Remainder

1
2
2

14 0

From Decimal to Binary

57
28

Remainder

1
2
2

14 0
7

2
0

From Decimal to Binary

57
28

Remainder

1
2
2

14 0
7

2
0

3
2

1

From Decimal to Binary

57
28

Remainder

1
2
2

14 0
7

2
0

3
2

12
1 1

From Decimal to Binary

57
28

Remainder

1
2
2

14 0
7

2
0

3
2

12
1 12
0 1

Hexadecimal

• Base 16

• Binary is horribly inconvenient to write out

• Easier to convert between hexadecimal
(which is more convenient) and binary

• Each hexadecimal digit maps to four
binary digits

• Can just memorize a table

Hexadecimal

• Digits 0-9, along with A (10), B (11), C (12),
D (13), E (14), F (15)

Hexadecimal Example

• What is 1AF hexadecimal in decimal?

Hexadecimal Example

FA1

Hexadecimal Example

FA1

OnesSixteensTwo-fifty-sixes

Hexadecimal Example

FA1

1 x 162 10 x 161 15 x 160
OnesSixteensTwo-fifty-sixes

Hexadecimal Example

FA1

1 x 162 10 x 161 15 x 160
OnesSixteensTwo-fifty-sixes

256

16 16 16 16 16
16 16 16 16 16

(160)

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

(15)

Hexadecimal to Binary

• Previous techniques all work, using decimal
as an intermediate

• The faster way: memorize a table (which
can be easily reconstructed)

Hexadecimal to Binary

Hexadecimal Binary

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Hexadecimal Binary

8 1000
9 1001

A (10) 1010
B (11) 1011
C (12) 1100
D (13) 1101
E (14) 1110
F (15) 1111

-0x1AF: 0001 1010 1111
-0101 1010: 0x5A

