COMP 122/L Lecture 2

Kyle Dewey

Qutline

® Operations on binary values
e AND, OR, XOR, NOT
® Bit shifting (left, two forms of right)
® Addition
® Subtraction

® [wos complement

Bitwise Operations

Bitwise AND

® Similar to logical AND (&&), except it
works on a bit-by-bit manner

® Denoted by a single ampersand: &
(1001 &

0101)
0001

Bitwise OR

® Similar to logical OR (| |), except it works
on a bit-by-bit manner

® Denoted by a single pipe character: |
(1001

|
0101) =
1101

Bitwise XOR

® Exclusive OR, denoted by a carat: *

® Similar to bitwise OR, except that if both
inputs are 1 then the result is O

(1001 ~
0101) =
1100

Bitwise NOT

® Similar to logical NOT (!), except it works
on a bit-by-bit manner

® Denoted by a tilde character: ~

~1001
0110

Shift Left

® Move all the bits N positions to the left,
subbing in N Os on the right

Shift Left

® Move all the bits N positions to the left,
subbing in N Os on the right

1001

Shift Left

® Move all the bits N positions to the left,
subbing in N Os on the right

1001 << 2 =
100100

Shift Left

® Useful as a restricted form of multiplication

® Question: how!?

1001 << 2
100100

Shift Left as
Multiplication

® Equivalent decimal operation:

234

Shift Left as
Multiplication

® Equivalent decimal operation:

234 << 1 =
2340

Shift Left as
Multiplication

® Equivalent decimal operation:

234 << 1
2340

234 << 2
23400

Multiplication

® Shifting left N positions multiplies by
(base)™

® Multiplying by 2 or 4 is often necessary
(shift left | or 2 positions, respectively)

® Often a whooole lot faster than telling the
processor to multiply

® Compilers try hard to do this

234 << 2 =
23400

Shift Right

® Move all the bits N positions to the right,
subbing in either N Os or N 1s on the left

® [wo different forms

Shift Right

® Move all the bits N positions to the right,
subbing in either N Os or N (whatever the
leftmost bit is)s on the left

® [wo different forms

1001 >> 2 =
either 0010 or 1110

Shift Right Trick

® Question: If shifting left multiplies, what
does shift right do!?

Shift Right Trick

® Question: If shifting left multiplies, what
does shift right do!?

® Answer:divides in a similar way, but
truncates result

Shift Right Trick

® Question: If shifting left multiplies, what
does shift right do!?

® Answer:divides in a similar way, but
truncates result

234

Shift Right Trick

® Question: If shifting left multiplies, what
does shift right do!?

® Answer:divides in a similar way, but
truncates result

234 >> 1 =
23

Two Forms of Shift
Right

® Subbing in Os makes sense

® What about subbing in the leftmost bit?
® And why is this called “arithmetic” shift
right?

1100 (arithmetic)>> 1 =
1110

Answer...Sort of

® Arithmetic form is intended for numbers in
twos complement, whereas the non-

arithmetic form is intended for unsigned
numbers

Twos Complement

Problem

® Binary representation so far makes it easy
to represent positive numbers and zero

® Question:What about representing
negative numbers!?

Twos Complement

® Way to represent positive integers, negative
integers, and zero

e |[f 1 is in the most significant bit (generally
leftmost bit in this class), then it is negative

Decimal to Twos
Complement

® Example: -5 decimal to binary (twos
complement)

Decimal to Twos
Complement

® Example: -5 decimal to binary (twos
complement)

® First, convert the magnitude to an unsigned
representation

Decimal to Twos
Complement

® Example: -5 decimal to binary (twos
complement)

® First, convert the magnitude to an unsigned
representation

5 (decimal) = 0101 (binary)

Decimal to Twos
Complement

® Then, take the bits, and negate them

Decimal to Twos
Complement

® Then, take the bits, and negate them

0101

Decimal to Twos
Complement

® Then, take the bits, and negate them

~0101 =
1010

Decimal to Twos
Complement

® Finally, add one:

Decimal to Twos
Complement

® Finally, add one:

1010

Decimal to Twos
Complement

® Finally, add one:

Twos Complement to
Decimal

® Same operation: negate the bits, and add
one

Twos Complement to
Decimal

® Same operation: negate the bits, and add
one

1011

Twos Complement to
Decimal

® Same operation: negate the bits, and add
one

~1011 =
0100

Twos Complement to
Decimal

® Same operation: negate the bits, and add
one

0100

Twos Complement to
Decimal

® Same operation: negate the bits, and add
one

0100 + 1 =
0101

Twos Complement to
Decimal

® Same operation: negate the bits, and add

one
0100 + 1 =

0101 =
— D

/

We started with
1011 - negative

Intuition

® Modular arithmetic, with the convention that a
leading 1 bit means negative

000

yd N\
> 111 001
Denotes / \
+1 110 010
\ /
101 /Oll
Y\lOO

-This is the intuition from Wikipedia, which makes a whole lot more sense

Intuition

® Modular arithmetic, with the convention that a
leading 1 bit means negative

(zero)
000
e
> | (least-) 111 001 (least +)
Denotes / \
t1 110 010
\ /
101 011 (most +)
N nd
100" (most -)

-This is the intuition from Wikipedia, which makes a whole lot more sense
-There is still a lot of detail missing here - it’s not necessary to understand in order to work
with this. There is actually quite a bit of mathematics behind why this works

Intuition

® Modular arithmetic, with the convention that a
leading 1 bit means negative

0
000
yd
> -] 111 001 |
Denotes / \
+1 2 110 010 2
\ /
-3 101 /011 3
Y\lOO
4

-This is the intuition from Wikipedia, which makes a whole lot more sense
-There is still a lot of detail missing here - it’s not necessary to understand in order to work
with this. There is actually quite a bit of mathematics behind why this works

Negation of 1

7N
117 001
/ \
110 010
\ /
101 011
AN N

-Take our wheel from before

Negation of 1

000
e N\

111 001
/ \
110 010
\ /
101 011
N e

-This is 1

Negation of 1

OOO
111 OOl

/N

110 OlO

101 Oll

\\IOOK/

—-Inverted bits

Negation of 1

OOO
111 OOl

/N

110 OlO

101 Oll

\\IOOK/

-Add 1
-This is exactly what we expected - binary 111 represents decimal -1

Consequences

® What is the negation of 000!

000

N
111 001

/ \

110 010

\ /

101 011

\\lOOK/

-Negate all bits: 000 -> 111
—-Add one: 000
-Technically, adding one resulted in 1000, but that got cut off

Consequences

® What is the negation of 100!

000

N
111 001

/ \

110 010

\ /

101 011

\\lOOK/

—Negate all bits: 100 -> 011

-Add one: 100

-Uh oh...this states that the negation of -4 is -4.

-Underlying problem is that we don’t have a representation for 4 with just three bits

Arithmetic Shift Right

¢ Not exactly division by a power of two

® Consider -3 /2

000
7
o117 001 |
/ \
2110 010 2
\ /
3 101 0113
100
4

-101 (-3) shifted right yields 110 (-2), NOT 111 (-1) as expected from typical integer
division

-Integer division rounds towards zero, whereas shift right rounds towards negative infinity
-This means they work _identically_ for positive values, but not for negative values (also
meaning they are always the same for _unsigned_ values)

Addition

Building Up Addition

® Question: how might we add the following,
in decimal!?

9806
+123

?

Building Up Addition

® Question: how might we add the following,
in decimal!?

9806
+123

?

Building Up Addition

® Question: how might we add the following,
in decimal!?

9806
+123

?

Building Up Addition

® Question: how might we add the following,
in decimal!?

9806
+123

?

Carry: 1 q

Building Up Addition

® Question: how might we add the following,

in decimal?
986
+123
?
1 8 6
0 +2 +3
+71 — = - =
—— 0 9

Building Up Addition

® Question: how might we add the following,

in decimal?
986
+123
7
Carry: 1 1 Q 6
0 +2 +3
+1 —— ——

Building Up Addition

® Question: how might we add the following,

in decimal?
986
+123
?
. 1 8 6
0 +2 +3
+0
i +1 —— ——
—— 0 9
! 1

Core Concepts

® VWe have a “primitive” notion of adding
single digits, along with an idea of carrying
digits

® We can build on this notion to add

numbers together that are more than one
digit long

Now in Binary

® Arguably simpler - fewer one-bit possibilities

Now in Binary

® Arguably simpler - fewer one-bit possibilities

0 0 1
+0 +1 +0 +
0 1 1 0

Chaining the Carry

® Also need to account for any input carry

0 0 0 0
0 0 1 1
+0 +1 +0 +1
0 1 1 0 Carr)’: 1
1 1 1
0 0 1 1
+ 0 +1 + 0 +1
1 0 Carry:1f 0 Carry:1| 1 Carry:1

Adding Multiple Bits

® How might we add the numbers below!?

Adding Multiple Bits

® How might we add the numbers below!?

-Need an initial carry-in of zero

Adding Multiple Bits

® How might we add the numbers below!?

-Need an initial carry-in of zero

Adding Multiple Bits

® How might we add the numbers below!?

110
011
+001

-Need an initial carry-in of zero

Adding Multiple Bits

® How might we add the numbers below!?

0110
011
+001

-Need an initial carry-in of zero

Adding Multiple Bits

® How might we add the numbers below!?

0110
011
+001

Output Carry Bit Result Bits

-Need an initial carry-in of zero

Another Example

Another Example

Another Example

Another Example

Another Example

Output Carry Bit Result Bits

-Now we have an output carry bit of 1. What does this mean?

Output Carry Bit
Significance

For unsigned numbers, it indicates if the
result did not fit all the way into the
number of bits allotted

May be an error condition for software

Signed Addition

® Question: what is the result of the
following operation!?

+011

Signed Addition

® Question: what is the result of the
following operation!?

01
+01

0110

| \ | \

-If these are treated as signed numbers in two’s complement, then we need a leading O to
indicate that this is a positive number
-Truncated to three bits, the result is a negative number!

Overflow

® |n this situation, overflow occurred: this
means that both the operands had the
same sign, and the result’s sign differed

011
+011

110

® Possibly a software error

Overflow vs. Carry

® These are different ideas
® Carry is relevant to unsigned values

® Overflow is relevant to sighed values

111 011 111 001
+001 +011 +100 +001
000 110 011 010
No Overflow; | Overflow; | Overflow;| No Overflow;
Carry No Carry | Carry No Carry

—-As to when is it a problem, this all depends on exactly what it is you’'re doing

Subtraction

Subtraction

® Have been saying to invert bits and add one
to second operand

® Could do it this way in hardware, but there
is a trick

00 Hint: these two 00
-001 questions are , t111
T equivalent T

? ?

Subtraction Trick

Assume we can cheaply invert bits, but we
want to avoid adding twice (once to add |
and once to add the other result)

How can we do this easily?

Subtraction Trick

Assume we can cheaply invert bits, but we
want to avoid adding twice (once to add |
and once to add the other result)

How can we do this easily?

® Set the initial carry to 1 instead of O

Subtraction Example

0101
-0011

Subtraction Example

0101 Invert 0011
-0011

>

Subtraction Example

0101 Invert 0011
-0011 . 1100

Subtraction Example

OlOE- Invert 0011 Equivalent to
-0011 > 1100 g

Subtraction Example

1
OlOE- Invert 0011 Equivalent to (1)8(1)
-0011 > 1100 g _

—-An initial carry-in of 1 is equivalent to adding 1 and then adding the other operand

Subtraction Example

111011

U10 Invert 0011 Equivalent to (1) N 8 (1)
~00LL > 1100 . T AOD
- 0010

—-An initial carry-in of 1 is equivalent to adding 1 and then adding the other operand

