
COMP 122/L Lecture 2
Kyle Dewey

Outline

• Operations on binary values

• AND, OR, XOR, NOT

• Bit shifting (left, two forms of right)

• Addition

• Subtraction

• Twos complement

Bitwise Operations

Bitwise AND

• Similar to logical AND (&&), except it
works on a bit-by-bit manner

• Denoted by a single ampersand: &

(1001 &
 0101)=
 0001

Bitwise OR

• Similar to logical OR (||), except it works
on a bit-by-bit manner

• Denoted by a single pipe character: |

(1001 |
 0101)=
 1101

Bitwise XOR

• Exclusive OR, denoted by a carat: ^

• Similar to bitwise OR, except that if both
inputs are 1 then the result is 0

(1001 ^
 0101)=
 1100

Bitwise NOT

• Similar to logical NOT (!), except it works
on a bit-by-bit manner

• Denoted by a tilde character: ~

~1001 =
 0110

Shift Left

• Move all the bits N positions to the left,
subbing in N 0s on the right

Shift Left

• Move all the bits N positions to the left,
subbing in N 0s on the right

1001

Shift Left

• Move all the bits N positions to the left,
subbing in N 0s on the right

1001 << 2 =
100100

Shift Left

• Useful as a restricted form of multiplication

• Question: how?

1001 << 2 =
100100

Shift Left as
Multiplication

• Equivalent decimal operation:

234

Shift Left as
Multiplication

• Equivalent decimal operation:

234 << 1 =
2340

Shift Left as
Multiplication

• Equivalent decimal operation:

234 << 1 =
2340

234 << 2 =
23400

Multiplication
• Shifting left N positions multiplies by
(base)N

• Multiplying by 2 or 4 is often necessary
(shift left 1 or 2 positions, respectively)

• Often a whooole lot faster than telling the
processor to multiply

• Compilers try hard to do this

234 << 2 =
23400

Shift Right

• Move all the bits N positions to the right,
subbing in either N 0s or N 1s on the left

• Two different forms

Shift Right

• Move all the bits N positions to the right,
subbing in either N 0s or N (whatever the
leftmost bit is)s on the left

• Two different forms
1001 >> 2 =
either 0010 or 1110

Shift Right Trick

• Question: If shifting left multiplies, what
does shift right do?

Shift Right Trick

• Question: If shifting left multiplies, what
does shift right do?

• Answer: divides in a similar way, but
truncates result

Shift Right Trick

• Question: If shifting left multiplies, what
does shift right do?

• Answer: divides in a similar way, but
truncates result

234

Shift Right Trick

• Question: If shifting left multiplies, what
does shift right do?

• Answer: divides in a similar way, but
truncates result

234 >> 1 =
23

Two Forms of Shift
Right

• Subbing in 0s makes sense

• What about subbing in the leftmost bit?

• And why is this called “arithmetic” shift
right?

1100 (arithmetic)>> 1 =
1110

Answer...Sort of

• Arithmetic form is intended for numbers in
twos complement, whereas the non-
arithmetic form is intended for unsigned
numbers

Twos Complement

Problem

• Binary representation so far makes it easy
to represent positive numbers and zero

• Question: What about representing
negative numbers?

Twos Complement

• Way to represent positive integers, negative
integers, and zero

• If 1 is in the most significant bit (generally
leftmost bit in this class), then it is negative

Decimal to Twos
Complement

• Example: -5 decimal to binary (twos
complement)

Decimal to Twos
Complement

• Example: -5 decimal to binary (twos
complement)

• First, convert the magnitude to an unsigned
representation

Decimal to Twos
Complement

• Example: -5 decimal to binary (twos
complement)

• First, convert the magnitude to an unsigned
representation

5 (decimal) = 0101 (binary)

Decimal to Twos
Complement

• Then, take the bits, and negate them

Decimal to Twos
Complement

• Then, take the bits, and negate them

0101

Decimal to Twos
Complement

• Then, take the bits, and negate them

~0101 =
 1010

Decimal to Twos
Complement

• Finally, add one:

Decimal to Twos
Complement

• Finally, add one:

1010

Decimal to Twos
Complement

• Finally, add one:
1010 + 1 =
1011

Twos Complement to
Decimal

• Same operation: negate the bits, and add
one

Twos Complement to
Decimal

• Same operation: negate the bits, and add
one

1011

Twos Complement to
Decimal

• Same operation: negate the bits, and add
one

~1011 =
 0100

Twos Complement to
Decimal

• Same operation: negate the bits, and add
one

0100

Twos Complement to
Decimal

• Same operation: negate the bits, and add
one

0100 + 1 =
0101

Twos Complement to
Decimal

• Same operation: negate the bits, and add
one

0100 + 1 =
0101 =
-5

We started with
1011 - negative

Intuition
• Modular arithmetic, with the convention that a

leading 1 bit means negative

000

001

010

011

100

101

110

111
Denotes
+1

-This is the intuition from Wikipedia, which makes a whole lot more sense

Intuition
• Modular arithmetic, with the convention that a

leading 1 bit means negative

000

001

010

011

100

101

110

111
Denotes
+1

(least +)(least -)

(most +)

(most -)

(zero)

-This is the intuition from Wikipedia, which makes a whole lot more sense
-There is still a lot of detail missing here - it’s not necessary to understand in order to work
with this. There is actually quite a bit of mathematics behind why this works

Intuition
• Modular arithmetic, with the convention that a

leading 1 bit means negative

000

001

010

011

100

101

110

111
Denotes
+1

1

0

2

3

-4

-3

-2

-1

-This is the intuition from Wikipedia, which makes a whole lot more sense
-There is still a lot of detail missing here - it’s not necessary to understand in order to work
with this. There is actually quite a bit of mathematics behind why this works

Negation of 1

000

001

010

011

100

101

110

111

-Take our wheel from before

Negation of 1

000

001

010

011

100

101

110

111

-This is 1

Negation of 1

000

001

010

011

100

101

110

111

-Inverted bits

Negation of 1

000

001

010

011

100

101

110

111

-Add 1
-This is exactly what we expected - binary 111 represents decimal -1

Consequences

• What is the negation of 000?

000

001

010

011

100

101

110

111

-Negate all bits: 000 -> 111
-Add one: 000
-Technically, adding one resulted in 1000, but that got cut off

Consequences

• What is the negation of 100?

000

001

010

011

100

101

110

111

-Negate all bits: 100 -> 011
-Add one: 100
-Uh oh...this states that the negation of -4 is -4.
-Underlying problem is that we don’t have a representation for 4 with just three bits

Arithmetic Shift Right
• Not exactly division by a power of two

• Consider -3 / 2

000

001

010

011

100

101

110

111 1

0

2

3

-4

-3

-2

-1

-101 (-3) shifted right yields 110 (-2), NOT 111 (-1) as expected from typical integer
division
-Integer division rounds towards zero, whereas shift right rounds towards negative infinity
-This means they work _identically_ for positive values, but not for negative values (also
meaning they are always the same for _unsigned_ values)

Addition

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

6
+3
--
?

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

6
+3
--
9

8
+2
--
?

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

6
+3
--
9

8
+2
--
0

Carry: 1

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

6
+3
--
9

8
+2
--
0

1
9

+1
--
?

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

6
+3
--
9

8
+2
--
0

1
9

+1
--
1

Carry: 1

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

6
+3
--
9

8
+2
--
0

1
9

+1
--
1

1
+0
--
1

Core Concepts

• We have a “primitive” notion of adding
single digits, along with an idea of carrying
digits

• We can build on this notion to add
numbers together that are more than one
digit long

Now in Binary

• Arguably simpler - fewer one-bit possibilities

0
+0
--
?

0
+1
--
?

1
+0
--
?

1
+1
--
?

Now in Binary

• Arguably simpler - fewer one-bit possibilities

0
+0
--
0

0
+1
--
1

1
+0
--
1

1
+1
--
0

Carry: 1

Chaining the Carry
• Also need to account for any input carry

1
0

+0
--
1

1
0

+1
--
0

1
1

+0
--
0

1
1

+1
--
1

0
0

+0
--
0

0
0

+1
--
1

0
1

+0
--
1

0
1

+1
--
0

Carry: 1 Carry: 1 Carry: 1

Carry: 1

Adding Multiple Bits

• How might we add the numbers below?

 011
+001

Adding Multiple Bits

• How might we add the numbers below?

 011
+001

0

-Need an initial carry-in of zero

Adding Multiple Bits

• How might we add the numbers below?

 011
+001

0

0

1

-Need an initial carry-in of zero

Adding Multiple Bits

• How might we add the numbers below?

 011
+001

0

0

1

0

1

-Need an initial carry-in of zero

Adding Multiple Bits

• How might we add the numbers below?

 011
+001

0

0

1

0

1

1

0

-Need an initial carry-in of zero

Adding Multiple Bits

• How might we add the numbers below?

 011
+001

0

0

1

0

1

1

0

Output Carry Bit Result Bits

-Need an initial carry-in of zero

Another Example

 111
+001

Another Example

 111
+001

0

Another Example

 111
+001

0

0

1

Another Example

 111
+001

0

0

1

0

1

Another Example

 111
+001

0

0

1

0

1

0

1

Output Carry Bit Result Bits

-Now we have an output carry bit of 1. What does this mean?

Output Carry Bit
Significance

• For unsigned numbers, it indicates if the
result did not fit all the way into the
number of bits allotted

• May be an error condition for software

Signed Addition

• Question: what is the result of the
following operation?

011
+011

?

Signed Addition

• Question: what is the result of the
following operation?

011
+011

0110

-If these are treated as signed numbers in two’s complement, then we need a leading 0 to
indicate that this is a positive number
-Truncated to three bits, the result is a negative number!

Overflow

• In this situation, overflow occurred: this
means that both the operands had the
same sign, and the result’s sign differed

011
+011

110

• Possibly a software error

Overflow vs. Carry
• These are different ideas

• Carry is relevant to unsigned values

• Overflow is relevant to signed values

011
+011

110

Overflow;
No Carry

111
+001

000

No Overflow;
Carry

111
+100

011

Overflow;
Carry

001
+001

010

No Overflow;
No Carry

-As to when is it a problem, this all depends on exactly what it is you’re doing

Subtraction

Subtraction

• Have been saying to invert bits and add one
to second operand

• Could do it this way in hardware, but there
is a trick

001
-001

?

001
+111

?

Hint: these two
questions are

equivalent

Subtraction Trick

• Assume we can cheaply invert bits, but we
want to avoid adding twice (once to add 1
and once to add the other result)

• How can we do this easily?

Subtraction Trick

• Assume we can cheaply invert bits, but we
want to avoid adding twice (once to add 1
and once to add the other result)

• How can we do this easily?

• Set the initial carry to 1 instead of 0

Subtraction Example

0101
-0011

Subtraction Example

0101
-0011

Invert 0011

Subtraction Example

0101
-0011

Invert 0011
1100

Subtraction Example

0101
-0011

Invert 0011
1100

Equivalent to

Subtraction Example

0101
-0011

Invert 0011
1100

Equivalent to
0101

+1100

1

-An initial carry-in of 1 is equivalent to adding 1 and then adding the other operand

Subtraction Example

0101
-0011

Invert 0011
1100

Equivalent to
0101

+1100

1

0

1

1

0

0

1

0

1

-An initial carry-in of 1 is equivalent to adding 1 and then adding the other operand

