COMP 122/L Lecture 2

Kyle Dewey

Outline

- Operations on binary values
 - AND, OR, XOR, NOT
 - Bit shifting (left, two forms of right)
 - Addition
 - Subtraction
- Twos complement

Bitwise Operations

Bitwise AND

- Similar to logical AND (& &), except it works on a bit-by-bit manner
- Denoted by a single ampersand: &

```
(1001 \& 0101) = 0001
```

Bitwise OR

- Similar to logical OR (||), except it works on a bit-by-bit manner
- Denoted by a single pipe character: |

```
(1001 |
0101) =
1101
```

Bitwise XOR

- Exclusive OR, denoted by a carat: ^
- Similar to bitwise OR, except that if both inputs are 1 then the result is 0

```
(1001 ^{0}) = 1100
```

Bitwise NOT

- Similar to logical NOT (!), except it works on a bit-by-bit manner
- Denoted by a tilde character: ~

$$\sim 1001 = 0110$$

• Move all the bits N positions to the left, subbing in N 0s on the right

• Move all the bits N positions to the left, subbing in N 0s on the right

1001

• Move all the bits N positions to the left, subbing in N 0s on the right

1001 << 2 = 100100

- Useful as a restricted form of multiplication
- Question: how?

1001 << 2 = 100100

Shift Left as Multiplication

• Equivalent decimal operation:

234

Shift Left as Multiplication

• Equivalent decimal operation:

Shift Left as Multiplication

• Equivalent decimal operation:

234 << 2 = 23400

Multiplication

- Shifting left N positions multiplies by (base) $^{\rm N}$
- Multiplying by 2 or 4 is often necessary (shift left 1 or 2 positions, respectively)
- Often a whooole lot faster than telling the processor to multiply
- Compilers try hard to do this

Shift Right

- Move all the bits N positions to the right, subbing in **either** N 0s or N 1s on the left
 - Two different forms

Shift Right

- Move all the bits N positions to the right, subbing in either N Os or N (whatever the leftmost bit is)s on the left
 - Two different forms

1001 >> 2 = either 0010 or 1110

• Question: If shifting left multiplies, what does shift right do?

- Question: If shifting left multiplies, what does shift right do?
 - Answer: divides in a similar way, but truncates result

- Question: If shifting left multiplies, what does shift right do?
 - Answer: divides in a similar way, but truncates result

234

- Question: If shifting left multiplies, what does shift right do?
 - Answer: divides in a similar way, but truncates result

Two Forms of Shift Right

- Subbing in 0s makes sense
- What about subbing in the leftmost bit?
 - And why is this called "arithmetic" shift right?

```
1100 (arithmetic)>> 1 = 1110
```

Answer...Sort of

• Arithmetic form is intended for numbers in twos complement, whereas the nonarithmetic form is intended for unsigned numbers

Twos Complement

Problem

- Binary representation so far makes it easy to represent positive numbers and zero
- Question: What about representing negative numbers?

Twos Complement

- Way to represent positive integers, negative integers, and zero
- If 1 is in the *most significant bit* (generally leftmost bit in this class), then it is negative

• Example: -5 decimal to binary (twos complement)

- Example: -5 decimal to binary (twos complement)
- First, convert the magnitude to an unsigned representation

- Example: -5 decimal to binary (twos complement)
- First, convert the magnitude to an unsigned representation

5 (decimal) = 0101 (binary)

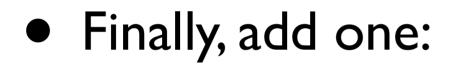
• Then, take the bits, and negate them

• Then, take the bits, and negate them

0101

• Then, take the bits, and negate them

 $\sim 0101 = 1010$



• Finally, add one:

1010

Finally, add one:
 1010 + 1 =
 1011

Twos Complement to Decimal

Same operation: negate the bits, and add one

Same operation: negate the bits, and add one

1011

Same operation: negate the bits, and add one

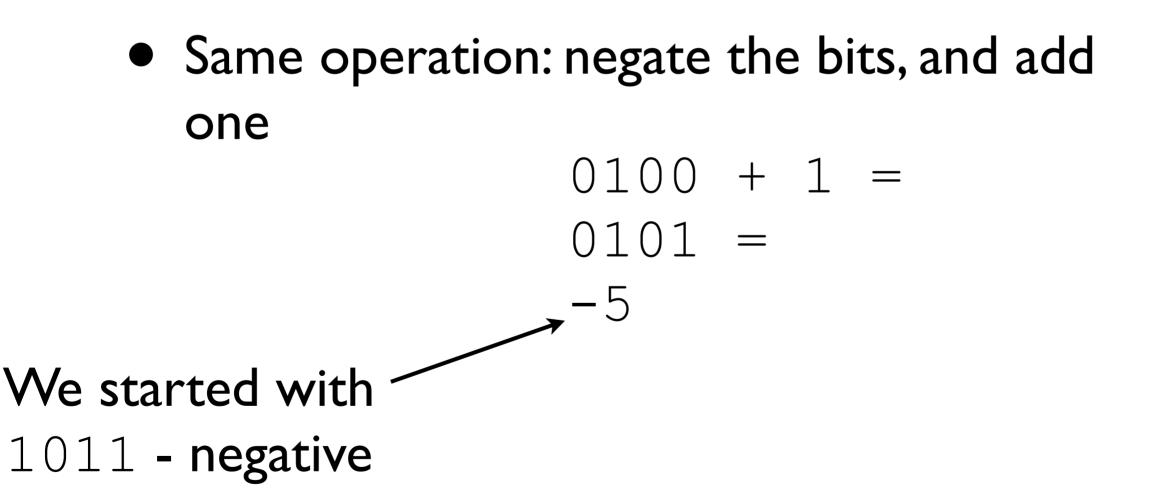
 $\sim 1011 = 0100$

Same operation: negate the bits, and add one

0100

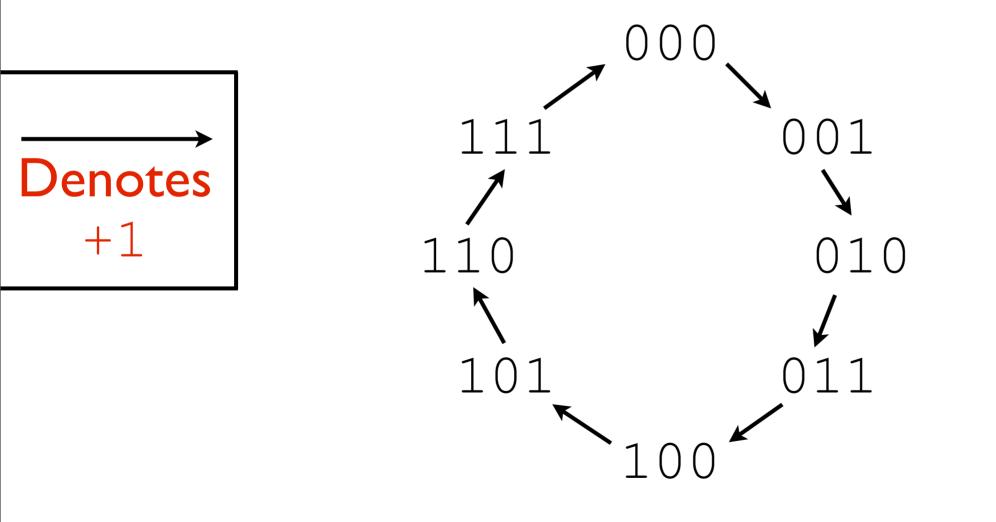
Same operation: negate the bits, and add one

0100 + 1 = 0101



Intuition

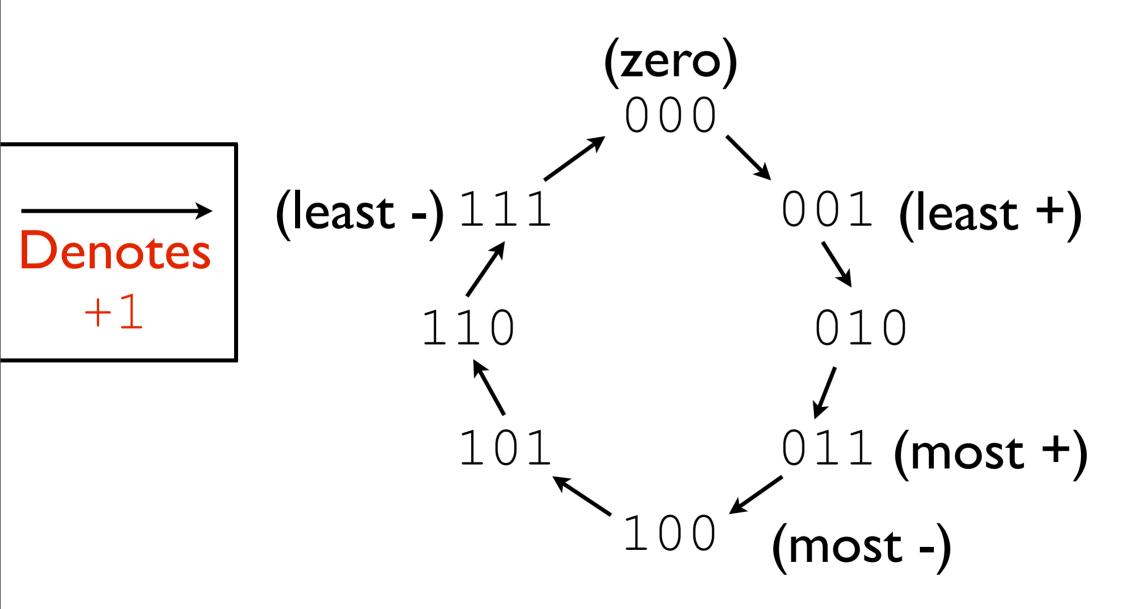
Modular arithmetic, with the convention that a leading 1 bit means negative



-This is the intuition from Wikipedia, which makes a whole lot more sense

Intuition

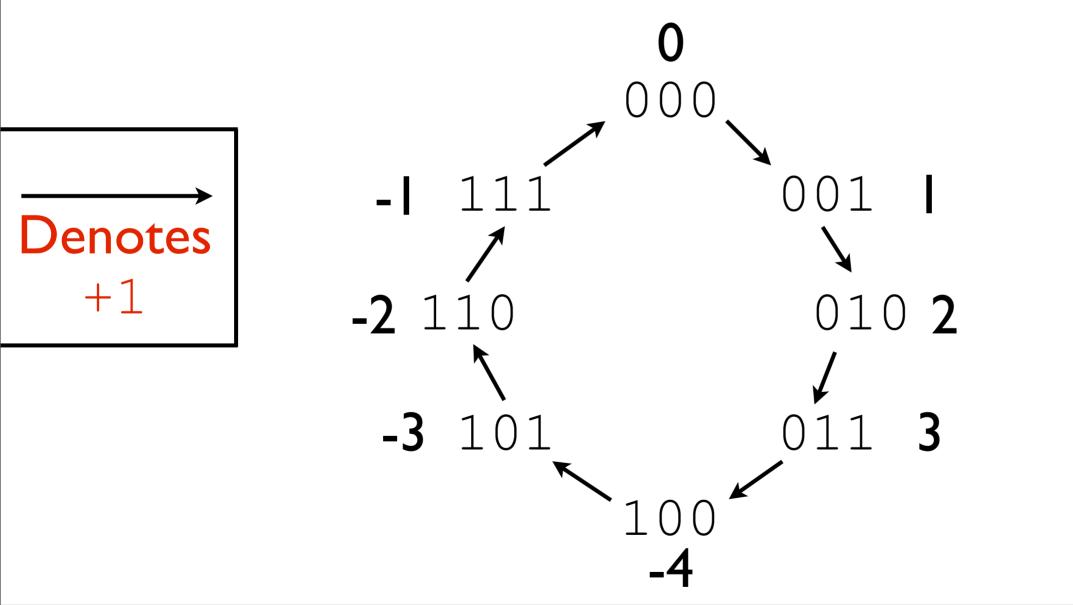
Modular arithmetic, with the convention that a leading 1 bit means negative



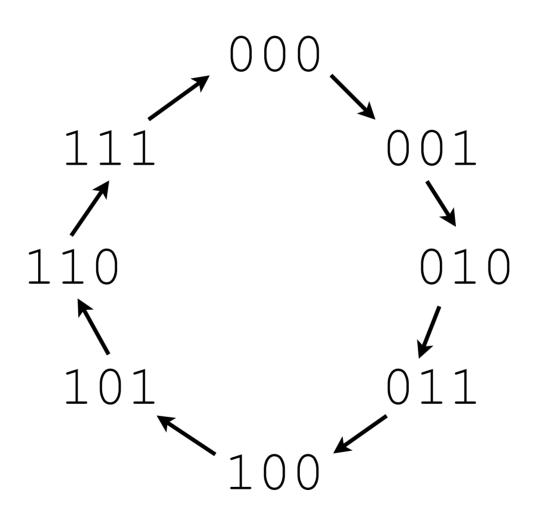
-This is the intuition from Wikipedia, which makes a whole lot more sense -There is still a lot of detail missing here - it's not necessary to understand in order to work with this. There is actually quite a bit of mathematics behind why this works

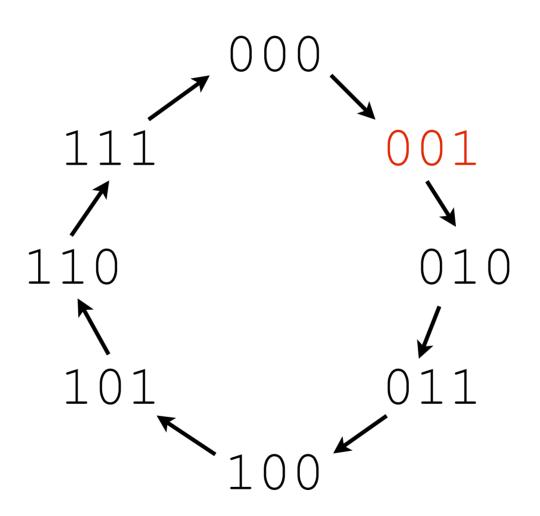
Intuition

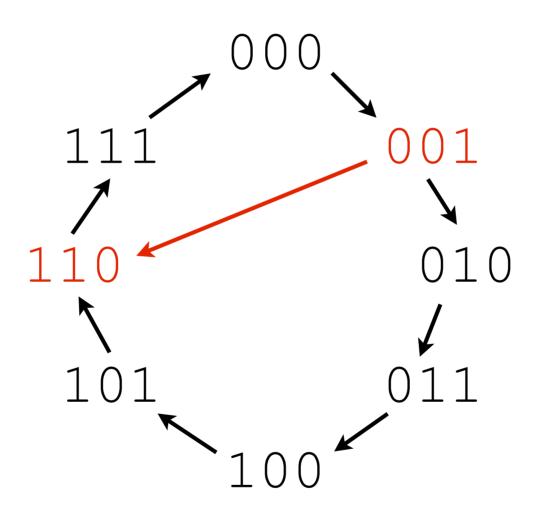
Modular arithmetic, with the convention that a leading 1 bit means negative



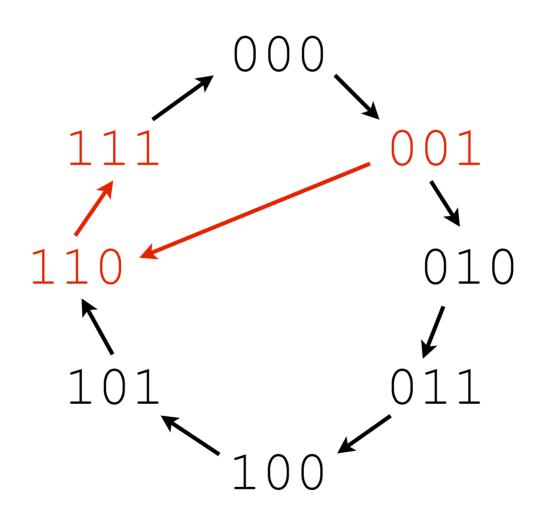
-This is the intuition from Wikipedia, which makes a whole lot more sense -There is still a lot of detail missing here - it's not necessary to understand in order to work with this. There is actually quite a bit of mathematics behind why this works







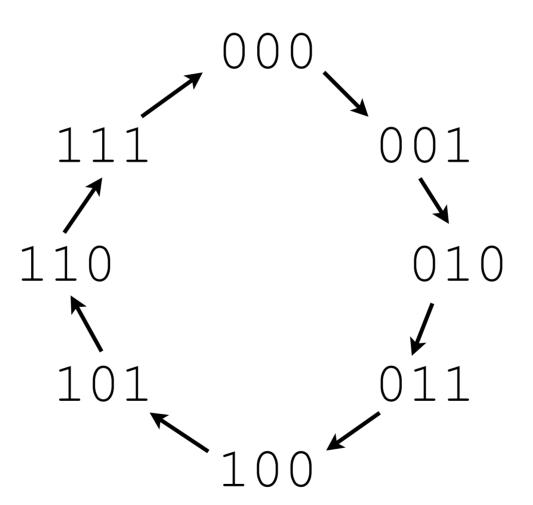
-Inverted bits



-Add 1 -This is exactly what we expected - binary 111 represents decimal -1

Consequences

• What is the negation of 000?



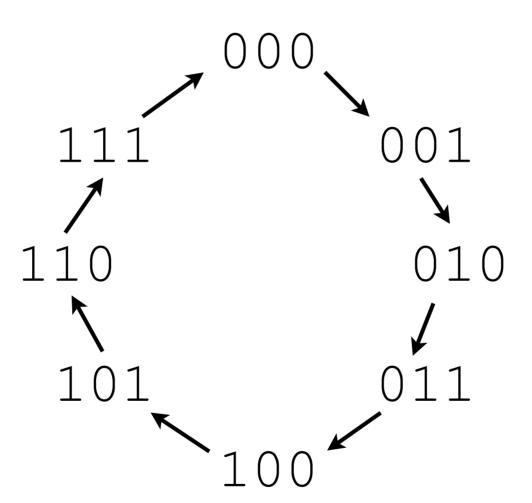
-Negate all bits: 000 -> 111

-Add one: 000

-Technically, adding one resulted in 1000, but that got cut off

Consequences

• What is the negation of 100?



-Negate all bits: 100 -> 011

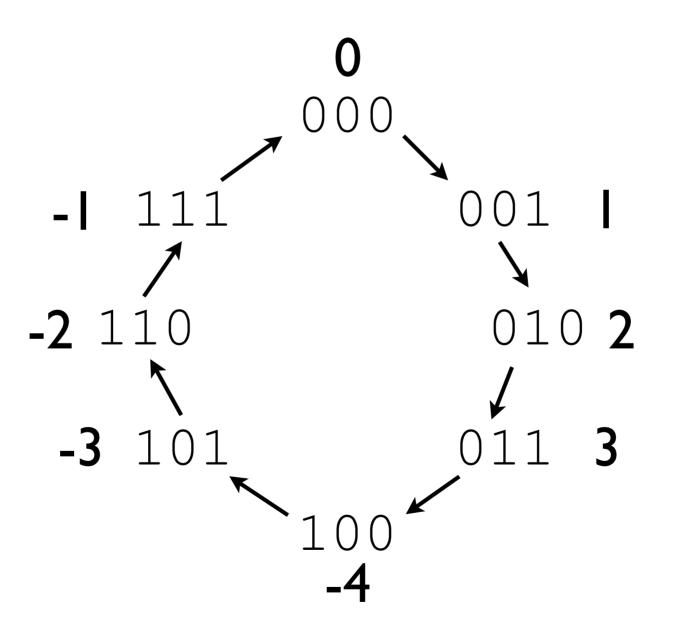
-Add one: 100

-Uh oh...this states that the negation of -4 is -4.

-Underlying problem is that we don't have a representation for 4 with just three bits

Arithmetic Shift Right

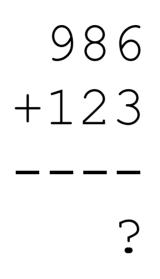
- Not exactly division by a power of two
- Consider -3 / 2

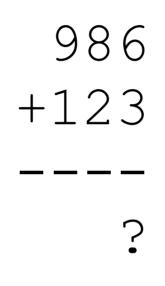


-101 (-3) shifted right yields 110 (-2), NOT 111 (-1) as expected from typical integer division

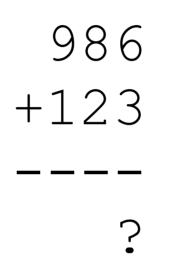
-Integer division rounds towards zero, whereas shift right rounds towards negative infinity -This means they work _identically_ for positive values, but not for negative values (also meaning they are always the same for _unsigned_ values)

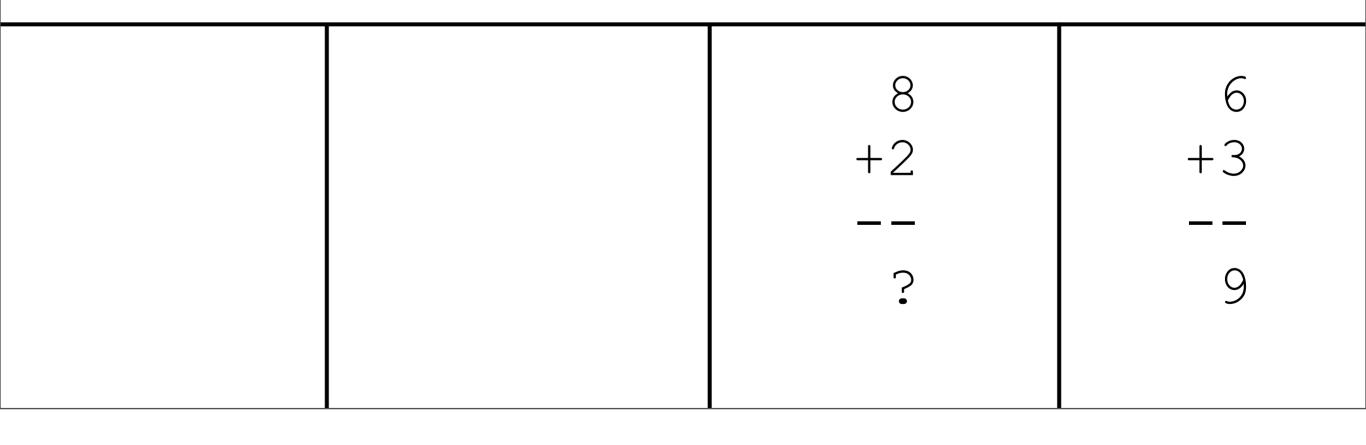
Addition

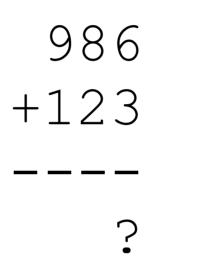




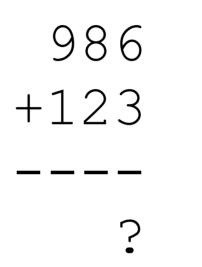
	6
	+3
	?

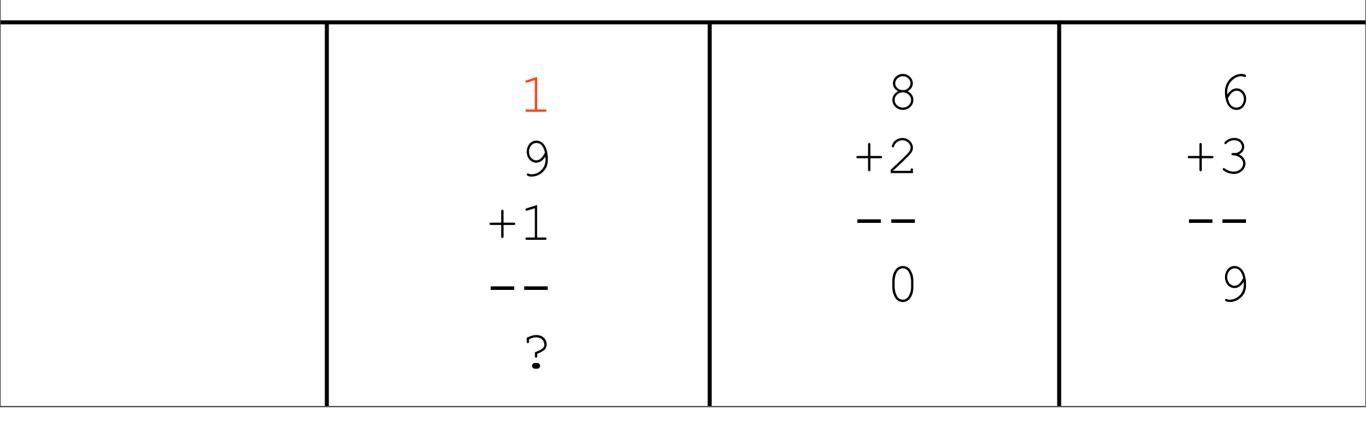


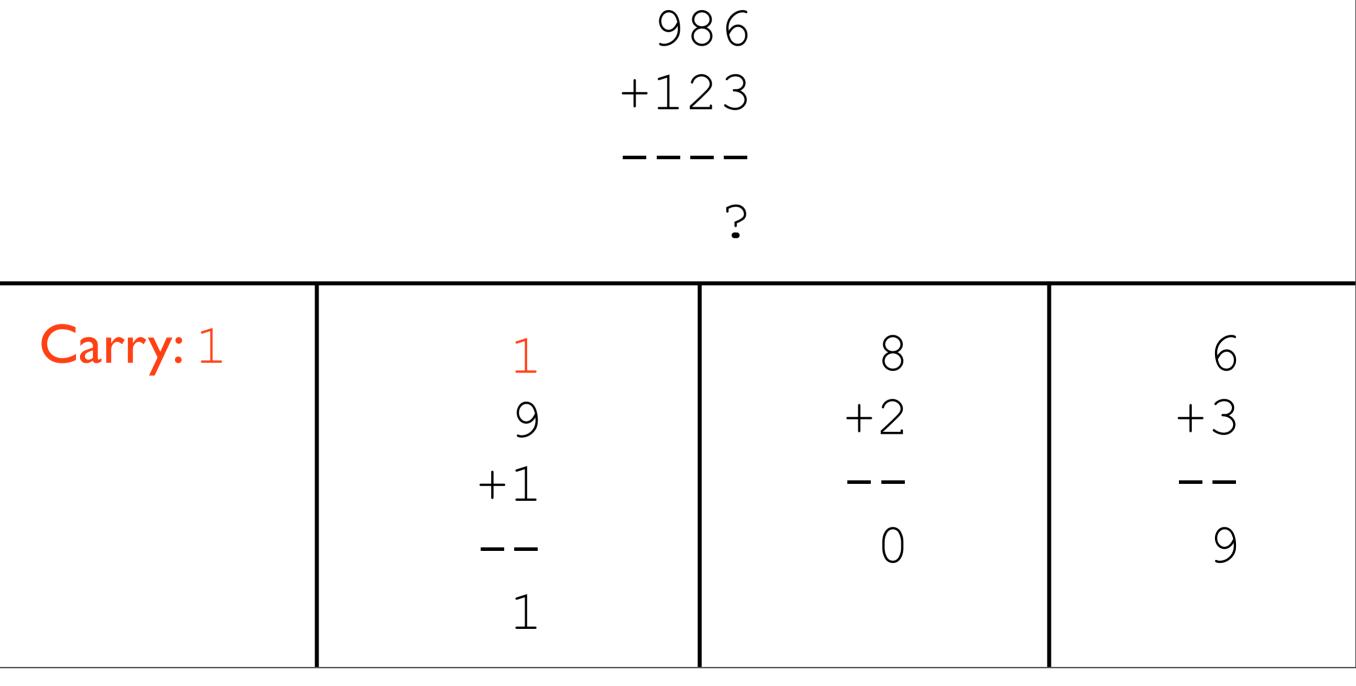


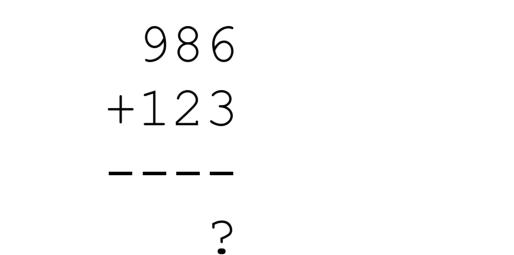


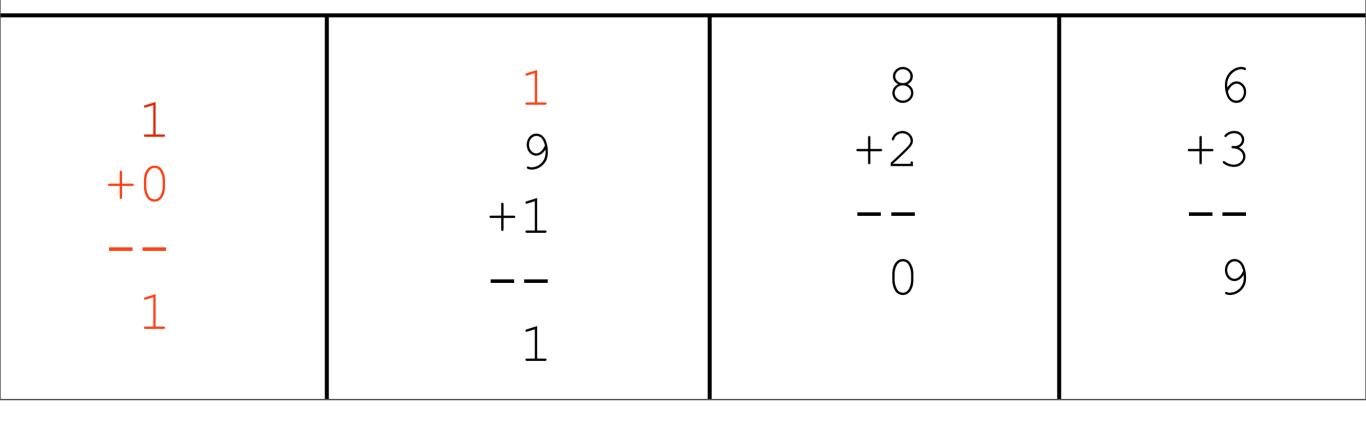
Carry: 1	8 +2	6 +3
	+2	+3
	0	9











Core Concepts

- We have a "primitive" notion of adding single digits, along with an idea of *carrying* digits
- We can build on this notion to add numbers together that are more than one digit long

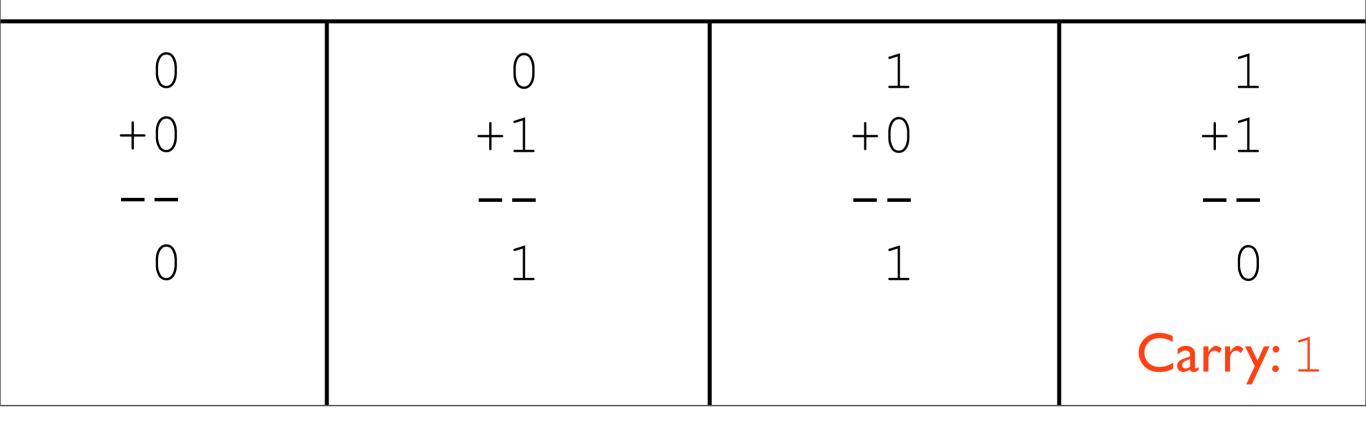
Now in Binary

• Arguably simpler - fewer one-bit possibilities

0	0	1	1
+0	+1	+0	+1
		— —	
?	?	?	?

Now in Binary

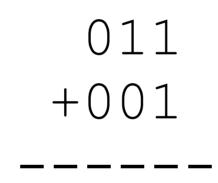
• Arguably simpler - fewer one-bit possibilities

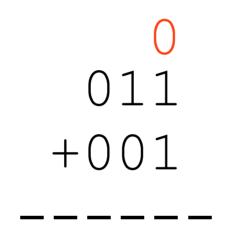


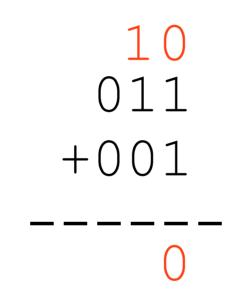
Chaining the Carry

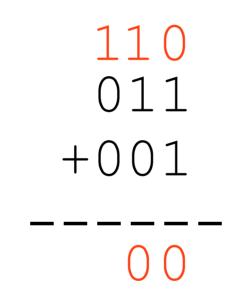
• Also need to account for any input carry

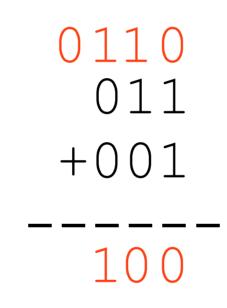
0	0		0		0	
0	0		1		1	
+0	+1		+0		+1	
— —						
0	1		1		0	Carry: 1
1	1		1		1	
0	0		1		1	
+0	+1		+0		+1	
— —						
1	0	Carry: 1	0	Carry: 1	1	Carry: 1

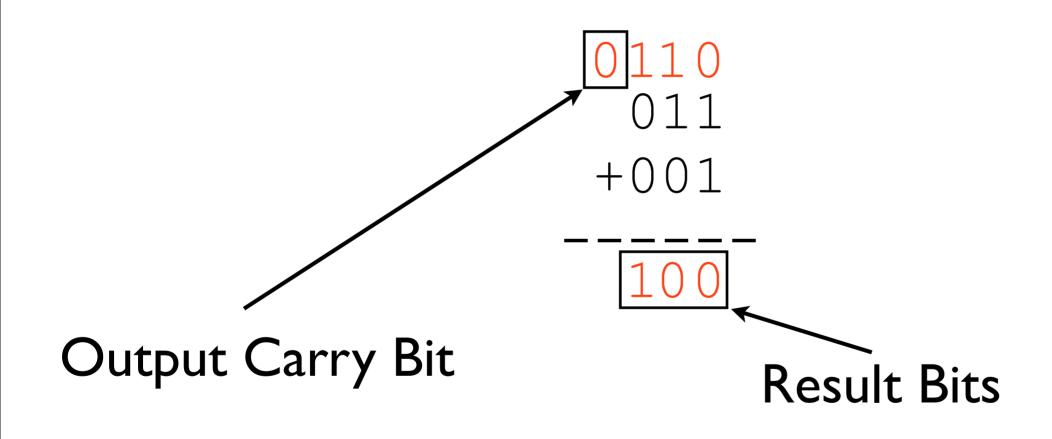












Another Example

111 +001

Another Example

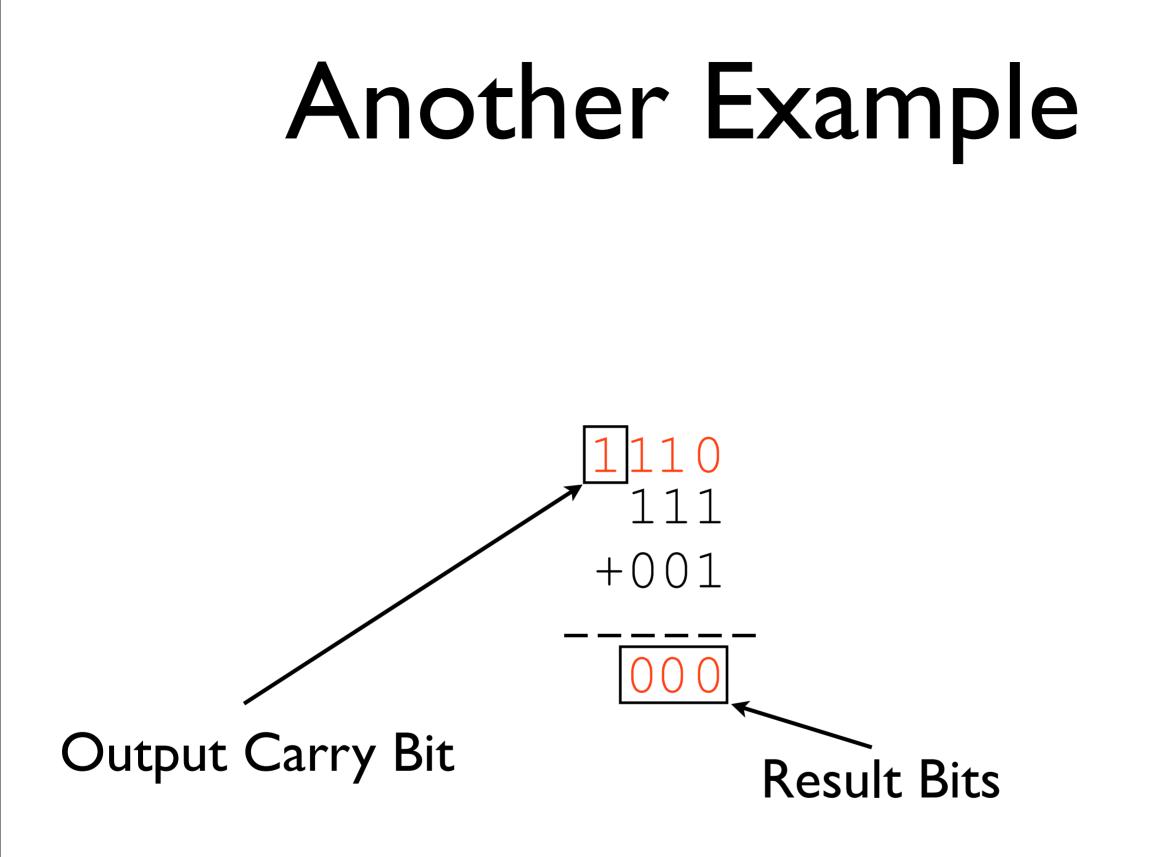
0 111 +001

Another Example

10 111 +001 _____

Another Example

110 111 +001 -----

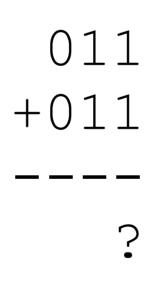


Output Carry Bit Significance

- For unsigned numbers, it indicates if the result did not fit all the way into the number of bits allotted
- May be an error condition for software

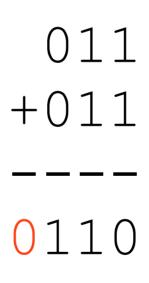
Signed Addition

• Question: what is the result of the following operation?



Signed Addition

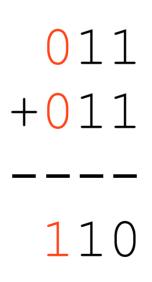
• Question: what is the result of the following operation?



-If these are treated as signed numbers in two's complement, then we need a leading 0 to indicate that this is a positive number -Truncated to three bits, the result is a negative number!

Overflow

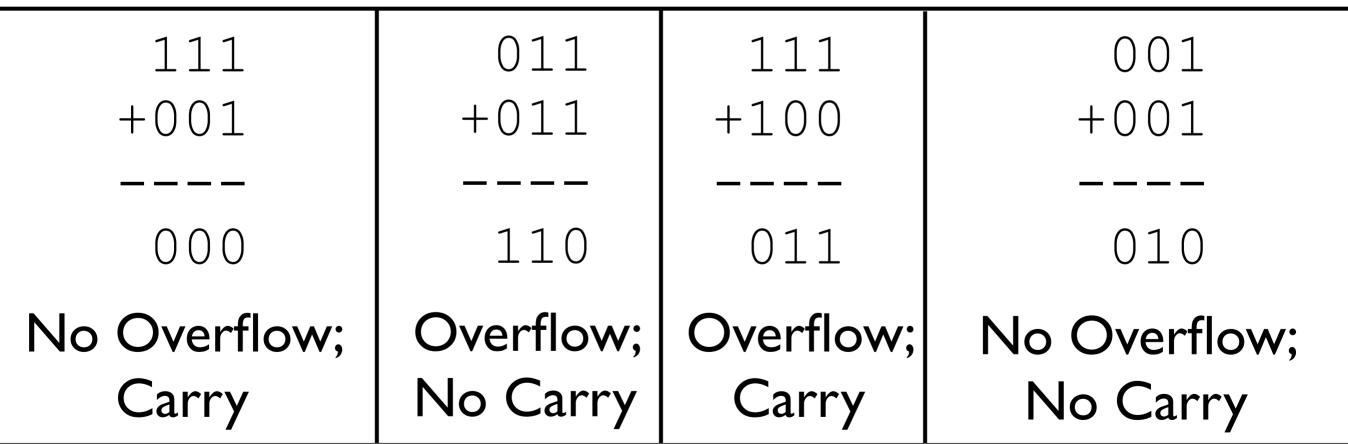
• In this situation, *overflow* occurred: this means that both the operands had the same sign, and the result's sign differed



• Possibly a software error

Overflow vs. Carry

- These are **different ideas**
 - Carry is relevant to unsigned values
 - Overflow is relevant to signed values

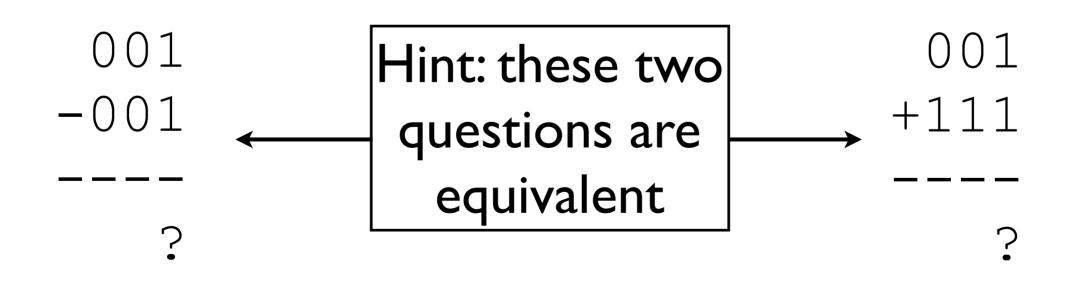


-As to when is it a problem, this all depends on exactly what it is you're doing

Subtraction

Subtraction

- Have been saying to invert bits and add one to second operand
- Could do it this way in hardware, but there is a trick



Subtraction Trick

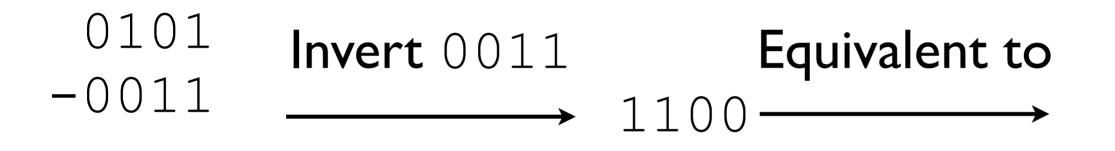
- Assume we can cheaply invert bits, but we want to avoid adding twice (once to add 1 and once to add the other result)
- How can we do this easily?

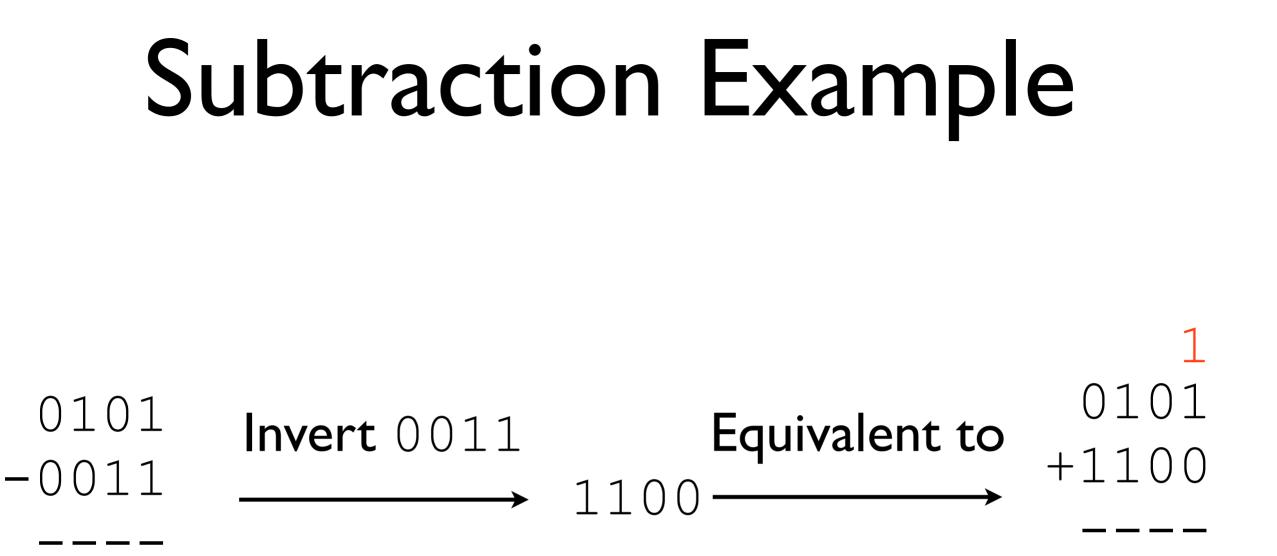
Subtraction Trick

- Assume we can cheaply invert bits, but we want to avoid adding twice (once to add I and once to add the other result)
- How can we do this easily?
 - Set the initial carry to 1 instead of $\mathbf{0}$

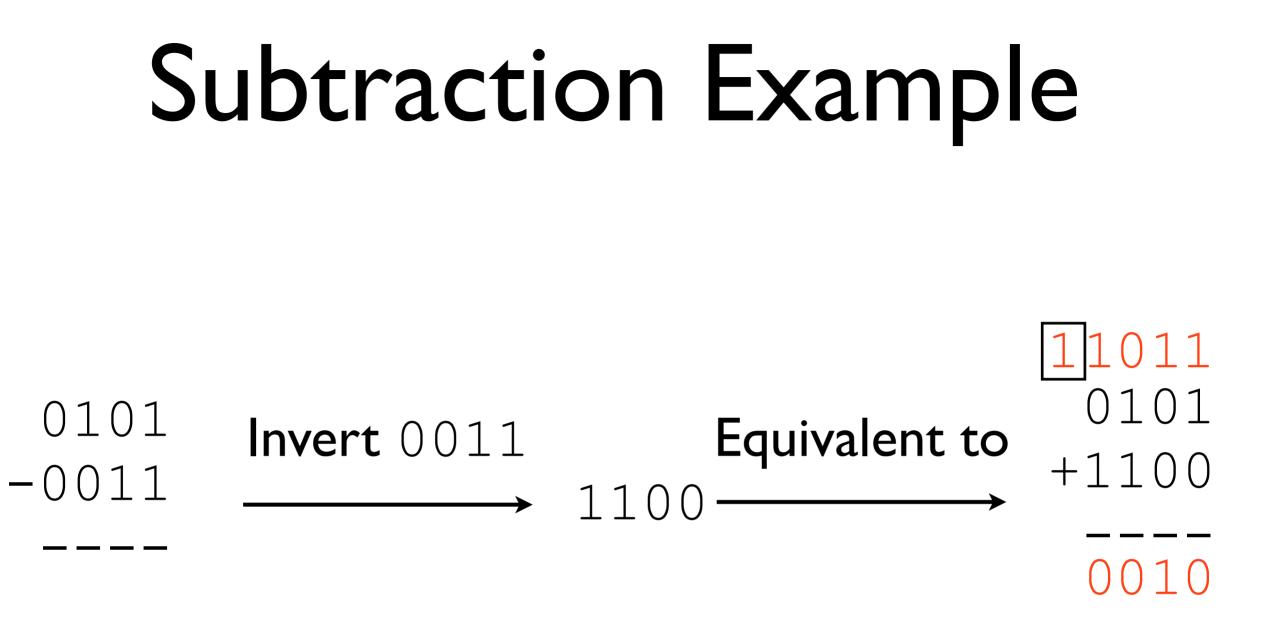
0101 -0011

0101 Invert 0011 -0011





-An initial carry-in of 1 is equivalent to adding 1 and then adding the other operand



-An initial carry-in of 1 is equivalent to adding 1 and then adding the other operand