COMP 122/L Lecture 2

Kyle Dewey

Outline

- Operations on binary values
 - AND, OR, XOR, NOT
 - Bit shifting (left, two forms of right)
 - Addition
 - Subtraction
- Twos complement

Bitwise Operations

Bitwise AND

- Similar to logical AND (&&), except it works on a bit-by-bit manner
- Denoted by a single ampersand: &

$$(1001 \& 0101) = 0001$$

Bitwise OR

- Similar to logical OR (| |), except it works on a bit-by-bit manner
- Denoted by a single pipe character: |

```
(1001 | 0101) = 1101
```

Bitwise XOR

- Exclusive OR, denoted by a carat: ^
- Similar to bitwise OR, except that if both inputs are 1 then the result is 0

```
(1001 ^{0}) = 0100
```

Bitwise NOT

- Similar to logical NOT (!), except it works on a bit-by-bit manner
- Denoted by a tilde character: ~

$$\sim 1001 = 0110$$

• Move all the bits N positions to the left, subbing in N 0s on the right

 Move all the bits N positions to the left, subbing in N 0s on the right

1001

 Move all the bits N positions to the left, subbing in N 0s on the right

- Useful as a restricted form of multiplication
- Question: how?

Shift Left as Multiplication

• Equivalent decimal operation:

Shift Left as Multiplication

• Equivalent decimal operation:

$$234 << 1 = 2340$$

Shift Left as Multiplication

• Equivalent decimal operation:

$$234 << 1 = 2340$$

$$234 << 2 = 23400$$

Multiplication

- \bullet Shifting left N positions multiplies by (base) $^{\rm N}$
- Multiplying by 2 or 4 is often necessary (shift left 1 or 2 positions, respectively)
- Often a whooole lot faster than telling the processor to multiply
- Compilers try hard to do this

$$234 << 2 = 23400$$

Shift Right

- Move all the bits N positions to the right, subbing in **either** N 0s or N 1s on the left
 - Two different forms

Shift Right

- Move all the bits N positions to the right, subbing in either N Os or N (whatever the leftmost bit is)s on the left
 - Two different forms

```
1001 >> 2 = either 0010 or 1110
```

 Question: If shifting left multiplies, what does shift right do?

- Question: If shifting left multiplies, what does shift right do?
 - Answer: divides in a similar way, but truncates result

- Question: If shifting left multiplies, what does shift right do?
 - Answer: divides in a similar way, but truncates result

- Question: If shifting left multiplies, what does shift right do?
 - Answer: divides in a similar way, but truncates result

Two Forms of Shift Right

- Subbing in 0s makes sense
- What about subbing in the leftmost bit?
 - And why is this called "arithmetic" shift right?

```
1100 (arithmetic)>> 1 = 1110
```

Answer...Sort of

 Arithmetic form is intended for numbers in twos complement, whereas the nonarithmetic form is intended for unsigned numbers

Twos Complement

Problem

- Binary representation so far makes it easy to represent positive numbers and zero
- Question: What about representing negative numbers?

Twos Complement

- Way to represent positive integers, negative integers, and zero
- If 1 is in the most significant bit (generally leftmost bit in this class), then it is negative

Example: -5 decimal to binary (twos complement)

- Example: -5 decimal to binary (twos complement)
- First, convert the magnitude to an unsigned representation

- Example: -5 decimal to binary (twos complement)
- First, convert the magnitude to an unsigned representation

```
5 (decimal) = 0101 (binary)
```

• Then, take the bits, and negate them

• Then, take the bits, and negate them

0101

Then, take the bits, and negate them

$$\sim 0101 = 1010$$

• Finally, add one:

Finally, add one:

1010

• Finally, add one:

$$1010 + 1 = 1011$$

Twos Complement to Decimal

Same operation: negate the bits, and add one

Same operation: negate the bits, and add one

Same operation: negate the bits, and add one

$$\sim 1011 = 0100$$

Same operation: negate the bits, and add one

0100

Same operation: negate the bits, and add one

$$0100 + 1 = 0101$$

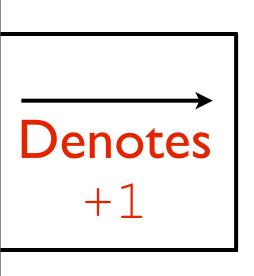
Same operation: negate the bits, and add one

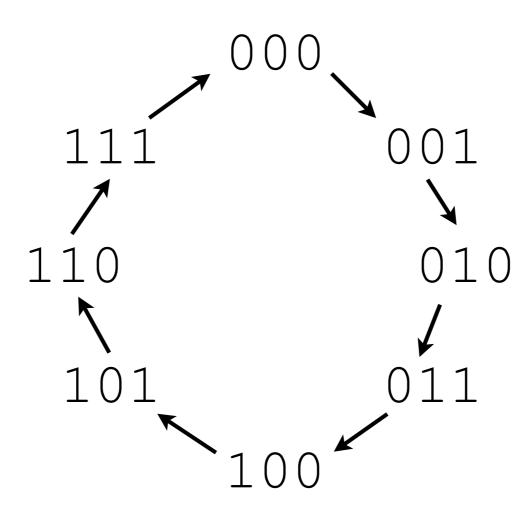
$$0100 + 1 = 0101 = -5$$

We started with 1011 - negative

Intuition

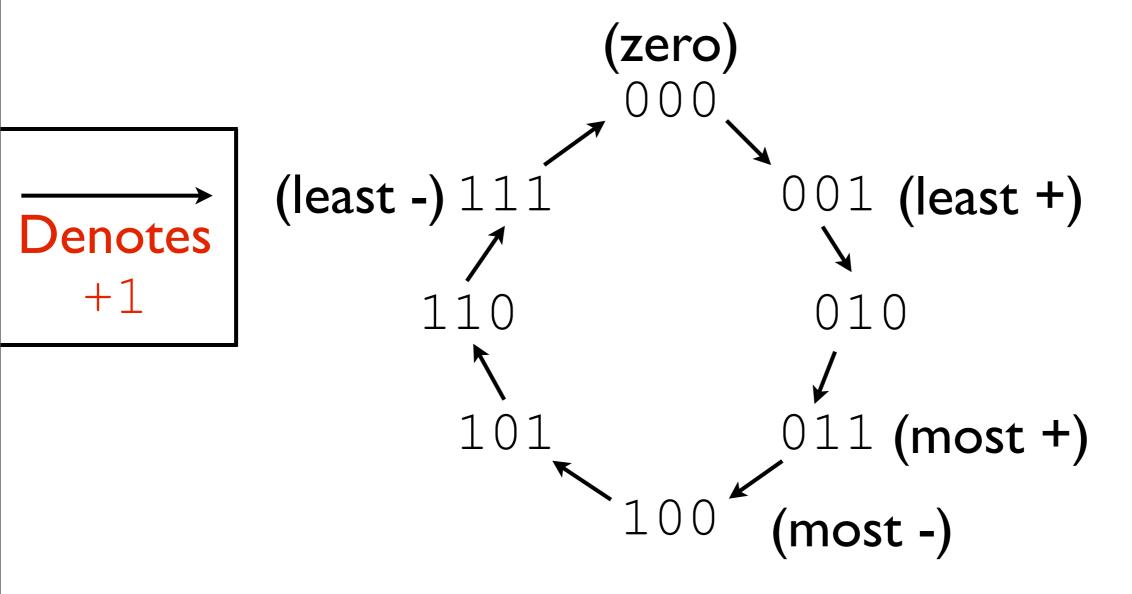
 Modular arithmetic, with the convention that a leading 1 bit means negative





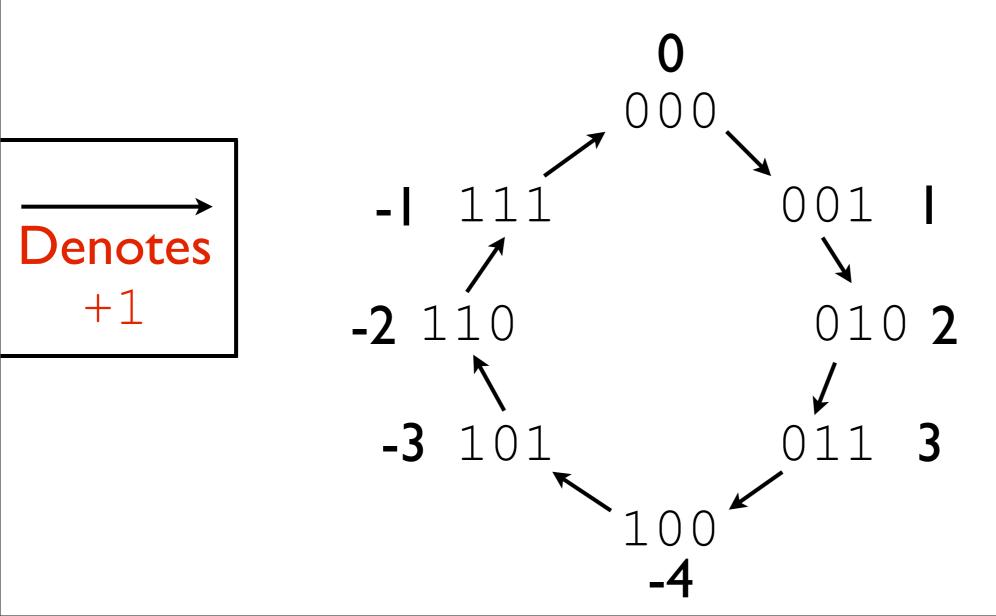
Intuition

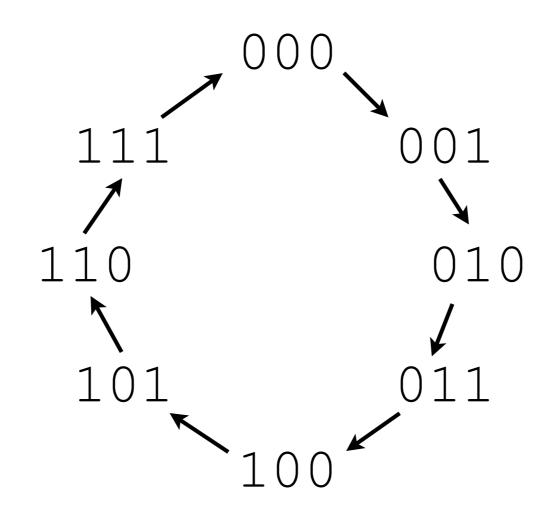
 Modular arithmetic, with the convention that a leading 1 bit means negative

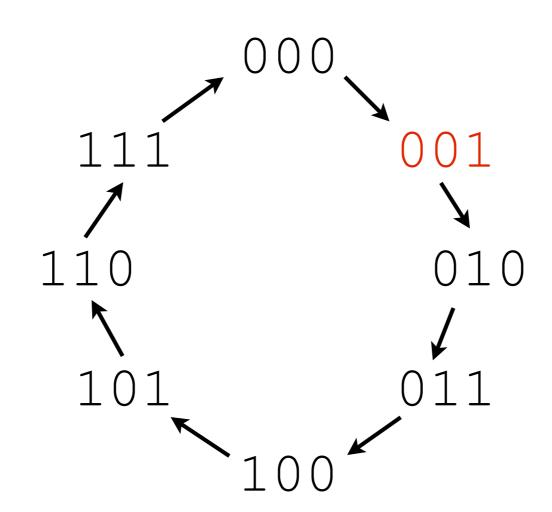


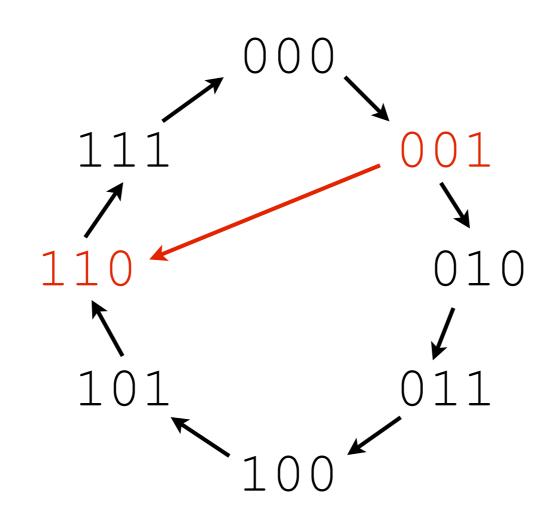
Intuition

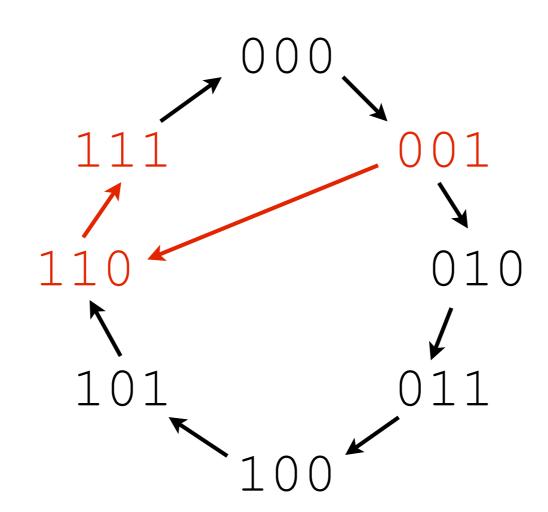
 Modular arithmetic, with the convention that a leading 1 bit means negative





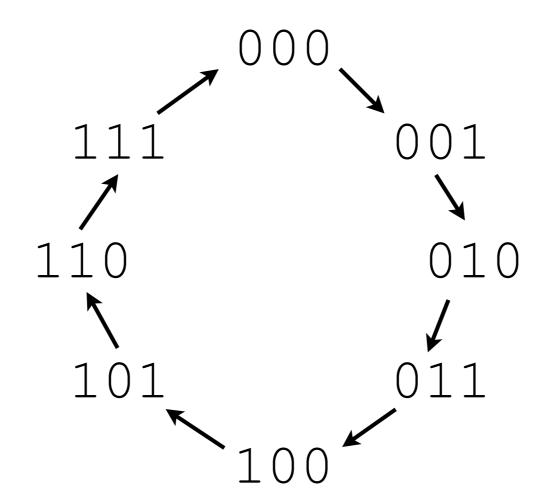






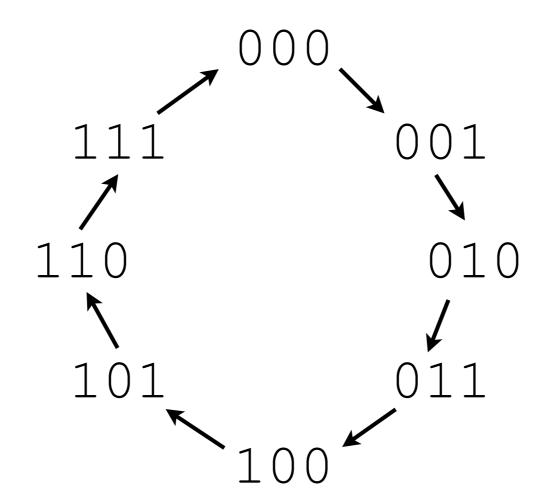
Consequences

What is the negation of 000?



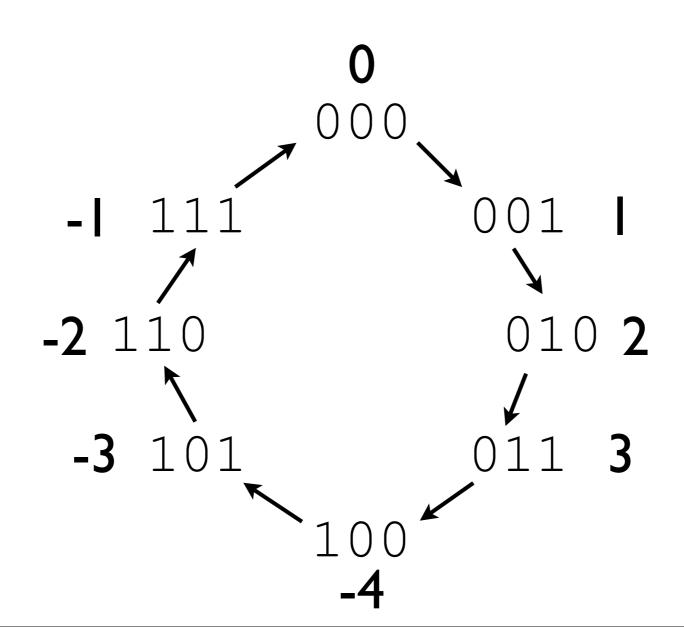
Consequences

• What is the negation of 100?



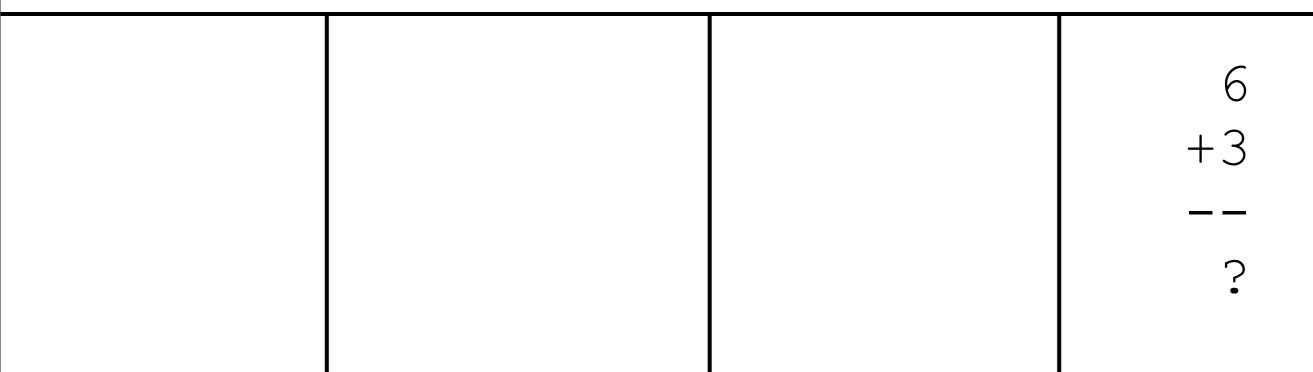
Arithmetic Shift Right

- Not exactly division by a power of two
- Consider -3 / 2



Addition

```
986
+123
----?
```



	8	6
	+2	+3
		9

Carry: 1	8	6
	+2	+3
	<u> </u>	
	0	9

1	8	6
9	+2	+3
+1	——	——
	0	9
?		

 Question: how might we add the following, in decimal?

Carry: 1

1
9
+1
1

1	1	8	6
+0	9	+2	+3
+ U	+1		<u> </u>
1		0	9
	1		

Core Concepts

- We have a "primitive" notion of adding single digits, along with an idea of carrying digits
- We can build on this notion to add numbers together that are more than one digit long

Now in Binary

Arguably simpler - fewer one-bit possibilities

0	0	1	1
+0	+1	+0	+1
		?	

Now in Binary

Arguably simpler - fewer one-bit possibilities

0	0	1	1
+0	+1	+0	+1
——	<u> </u>		
0	1	1	0
			Carry: 1

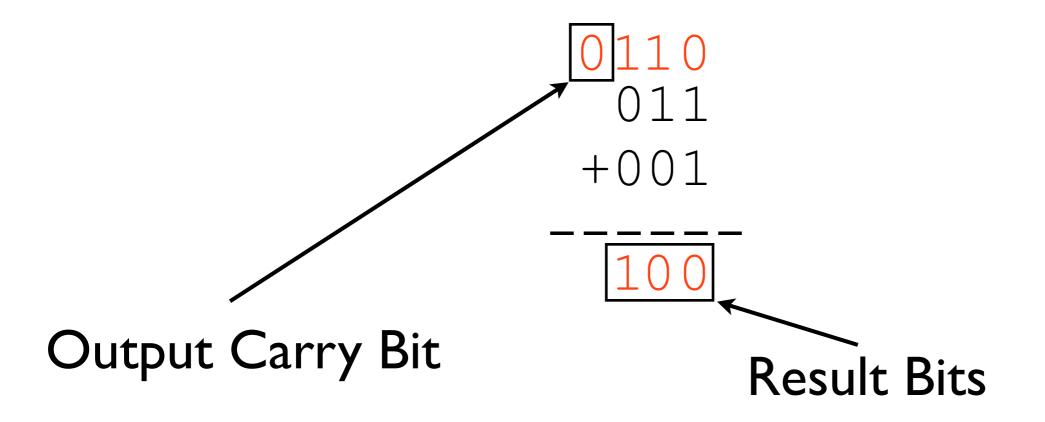
Chaining the Carry

Also need to account for any input carry

0	0		0		0	
0	0		1		1	
+0	+1		+0		+1	
0	1		1		0	Carry: 1
1	1		1		1	
0	0		1		1	
+0	+1		+0		+1	
1	0	Carry: 1	0	Carry: 1	1	Carry: 1

```
0
011
+001
----
```

```
0110
011
+001
-----
```



Another Example

111 +001 ----

Another Example

```
111
+001
```

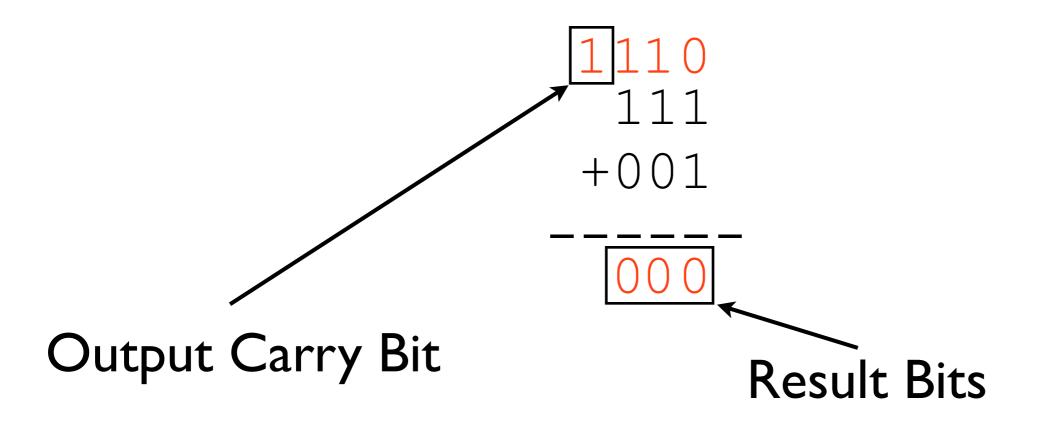
Another Example

```
10
111
+001
----
```

Another Example

```
110
111
+001
----
```

Another Example



Output Carry Bit Significance

- For unsigned numbers, it indicates if the result did not fit all the way into the number of bits allotted
- May be an error condition for software

Signed Addition

 Question: what is the result of the following operation?

Signed Addition

 Question: what is the result of the following operation?

```
011
+011
----
0110
```

Overflow

 In this situation, overflow occurred: this means that both the operands had the same sign, and the result's sign differed

Possibly a software error

Overflow vs. Carry

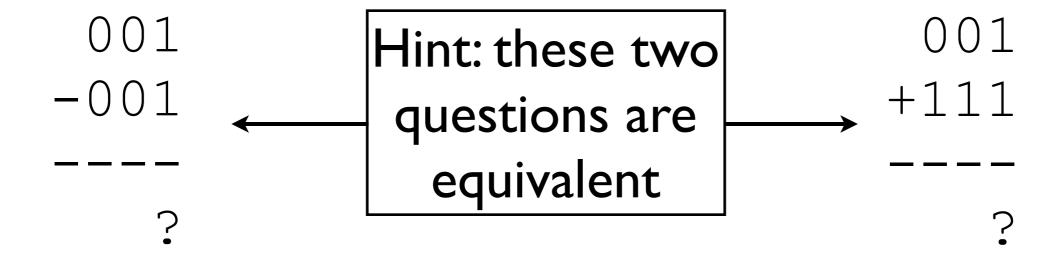
- These are different ideas
 - Carry is relevant to unsigned values
 - Overflow is relevant to signed values

No Overflow; Carry	Overflow; No Carry	Overflow; Carry	No Overflow; No Carry
000	110	011	010
+001	+011	+100	+001
111	011	111	001

Subtraction

Subtraction

- Have been saying to invert bits and add one to second operand
- Could do it this way in hardware, but there is a trick



Subtraction Trick

- Assume we can cheaply invert bits, but we want to avoid adding twice (once to add I and once to add the other result)
- How can we do this easily?

Subtraction Trick

- Assume we can cheaply invert bits, but we want to avoid adding twice (once to add I and once to add the other result)
- How can we do this easily?
 - Set the initial carry to 1 instead of 0

```
0101
```

-0011

