COMP 122/L Lecture 21

Kyle Dewey

Outline

- Exploiting don't cares in Karnaugh maps
- Multiplexers
- Arithmetic Logic Units (ALUs)

Exploiting Don't Cares in Karnaugh-Maps

Don't Cares

- Occasionally, a circuit's output will be unspecified on a given input
 - Occurs when an input's value is invalid
- In these situations, we say the output is a don't care, marked as an X in a truth table

Example: Binary Coded Decimal

- Occasionally, it is convenient to represent decimal numbers directly in binary, using 4bits per decimal digit
 - For example, a digital display

-Image source: http://www.eaglecontrols.co.uk/images/ld_1035_clock.jpg

Example: Binary Coded Decimal

Not all binary values map to decimal digits

Binary	Decimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7

Binary	Decimal
1000	8
1001	9
1010	X
1011	X
1100	X
1101	X
1110	X
1111	X

Significance

- Recall that in a K-map, we can only group 1s
- Because the value of a don't care is irrelevant, we can treat it as a 1 if it is convenient to do so (or a 0 if that would be more convenient)

• A circuit that calculates if the binary coded decimal input % 2 == 0

• A circuit that calculates if the binary coded decimal input % 2 == 0

Ι ₃	I ₂	I ₁	Ιo	R
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0

I ₃	Ι ₂	Iı	Ιo	R
1	0	0	0	1
1	0	0	1	0
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	Χ

As a K-map

I ₁ :	Ιo			
I_3I_2	00	01	11	10
00	1	0	1	0
01	1	0	1	0
11	X	X	X	X
10	1	0	X	X

If we don't exploit don't cares...

I_1I	- - 0			
I_3I_2	00	01	11	10
0 0	1	0	1	0
01	1	0	1	0
11	X	X	X	X
10	1	0	X	X

If we **do** exploit don't cares...

I_1	Γ ₀			
I_3I_2	00	01	11	10
0 0	1	0	1	0
01	1	0	1	0
11	X	X	X	X
10	1	0	X	X

If we **do** exploit don't cares...

-Note that because of the rule that we need to make groups as large as possible, the group on the right swallowed two don't cares to make a group of 2 as opposed to a group of 4. The end result is that the equation doesn't at all depend on I_3 and I_2

Multiplexers

Motivation

- At this point, you've seen a lot of straightline circuits
- However, this doesn't quite match up with respect to what a processor does. Why?

Motivation

- At this point, you've seen a lot of straightline circuits
- However, this doesn't quite match up with respect to what a processor does. Why?
 - We don't always do the same thing it depends on the instruction
 - What do we need here?

Motivation

- At this point, you've seen a lot of straightline circuits
- However, this doesn't quite match up with respect to what a processor does. Why?
 - We don't always do the same thing it depends on the instruction
 - What do we need here?
 - Some form of a conditional

Conditional

- Assume selector, A, B, and R all hold a single bit
- How can we implement this using what we have seen so far? (Hint: what does the truth table look like?)

```
R = (selector) ? A : B
```

$$R = (selector) ? A : B$$

S	A	В	R
0	0	0	\circ
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$R = (selector) ? A : B$$

S	A	В	R
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Unreduced sum-of-products:

R = !S!AB + !SAB + SA!B + SAB

$$R = (selector) ? A : B$$

S	A	В	R
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Unreduced sum-of-products:

$$R = !S!AB + !SAB + SA!B + SAB$$

Reduced sum-of-products:

$$R = !SB + SA$$

- -The reduced sum-of-products looks pretty intuitive
- -The point: this conditional can be represented by a circuit

Original

```
R = (selector) ? A : B
```

Modified

```
R = (selector) ? doThis() : doThat()
```

-Key point: we aren't just conditionally returning a variable, but instead performing some work

Original

```
R = (selector) ? A : B
```

Modified

```
R = (selector) ? doThis() : doThat()
```

Intended semantics: either doThis() or doThat() is executed. Our formula from before doesn't satisfy this property:

```
R = !S*doThat() + S*doThis()
```

- -Key point: we aren't just conditionally returning a variable, but instead performing some work
- -Intended semantics: only one branch is executed
- -Question: how can we fix this?

Original

```
R = (selector) ? A : B
```

Modified

```
R = (selector) ? doThis() : doThat()
```

- Fixing this is hard, but possible
- Involves circuitry we'll learn later
- Oddly enough, this isn't as big of a problem as it seems, and it's ironically faster than doing just one or the other. Why?

⁻Key point: we aren't just conditionally returning a variable, but instead performing some work

⁻Intended semantics: only one branch is executed

⁻Question: how can we fix this?

Original

```
R = (selector) ? A : B
```

Modified

```
R = (selector) ? doThis() : doThat()
```

 Oddly enough, this isn't as big of a problem as it seems, and it's ironically faster than doing just one or the other. Why? branches executed in parallel at the hardware level. Faster because extra circuitry is extra.

⁻Key point: we aren't just conditionally returning a variable, but instead performing some work

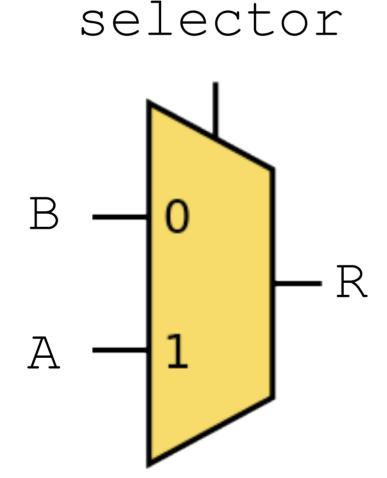
⁻Intended semantics: only one branch is executed

⁻Question: how can we fix this?

Multiplexer

Component that does exactly this:

$$R = (selector) ? A : B$$



Question

- Recall the arithmetic logic unit (ALU), which is used to add, subtract, shift, perform bitwise operations, etc.
- How might a multiplexer be useful for an ALU?

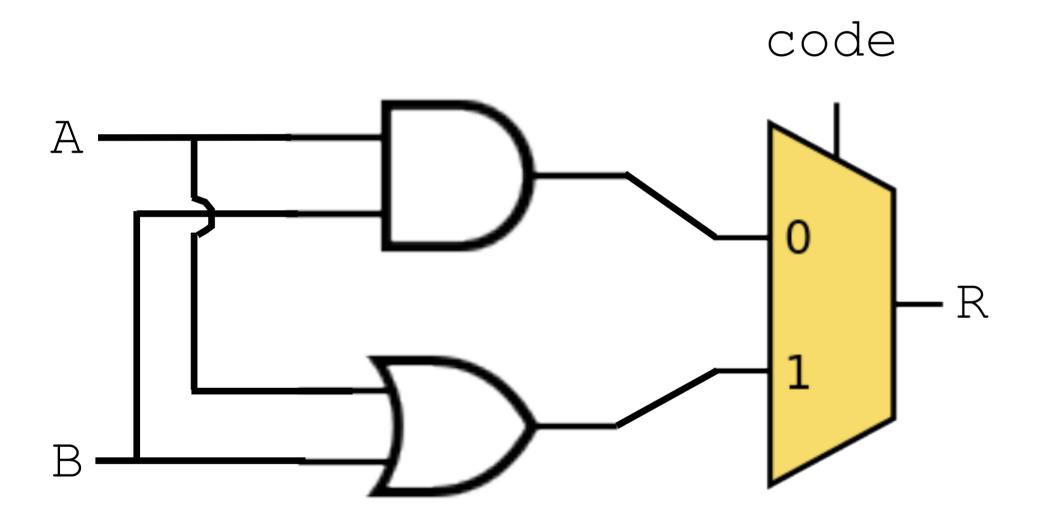
⁻Hint: addu and and both are opcode zero, but they have different function codes -Both have the same instruction format too. They differ only in the actual operation performed, and the function code.

Question

- Recall the arithmetic logic unit (ALU), which is used to add, subtract, shift, perform bitwise operations, etc.
- How might a multiplexer be useful for an ALU? - Do all operations at once in parallel, and then use a multiplexer to select the one you want

⁻Hint: addu and and both are opcode zero, but they have different function codes -Both have the same instruction format too. They differ only in the actual operation performed, and the function code.

- Let's design a one-bit ALU that can do bitwise AND and bitwise OR
- It has three inputs: A, B, and S, along with one output R
- S is a code provided indicating which operation to perform; 0 for AND and 1 for OR

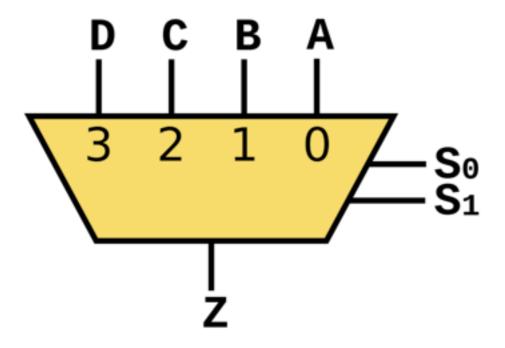


Bigger Multiplexers

- Can have a multiplexer with more than two inputs
- Need multiple select lines in this case
- Question: how many select lines do we need for a 4 input multiplexer?

Bigger Multiplexers

- Can have a multiplexer with more than two inputs
- Need multiple select lines in this case
- Question: how many select lines do we need for a 4 input multiplexer? - 2. Values of different lines essentially encode different binary integers.



Bigger Multiplexers

 We can build up bigger multiplexers from 2-input multiplexers. How?