COMP 122/L Lecture 27

Kyle Dewey

Outline

• Finite state machines

Finite State Machines

Finite State Machines

Basic idea: computation is done via traversal of **states**, where the states are known ahead of time.

Finite State Machines

Basic idea: computation is done via traversal of **states**, where the states are known ahead of time.

Example: Lock and Key

Example: Counting Change

Significance

- Can encode many problems using finite state machines (FSMs)
- FSMs can be implemented with sequential circuits
- Internals of processors can be encoded with FSMs

Significance

- Can encode many problems using finite state machines (FSMs)
- FSMs can be implemented with sequential circuits
- Internals of processors can be encoded with FSMs

Step I: Encode each state in binary

Step I: Encode each state in binary

Step I: Encode each state in binary

Step 2: Make truth table mapping current state to next state

Step 2: Make truth table mapping current state to next state

Step 2: Make truth table mapping current state to next state

				S1		For N1	
S1	S0	N1	NO	S0	0	1	
0	0	0	1	0	0	0	
0	1	1	0	1	1	Х	
1	0	0	0				
1	1	Х	Х				

Step 4: Build sequential circuit

Step 4: Build sequential circuit

N0 = !S1!S0N1 = S0

Step 4: Build sequential circuit

FSMs with External Inputs

Same process, but with more inputs in the truth table

FSMs with External Inputs

Same process, but with more inputs in the truth table

FSMs with External Inputs

Same process, but with more inputs in the truth table

KI	KR	ΚT	S1	S0	N1	NO
0	0	0	0	0	0	0
••	• •	• •	• •	• •	• •	• •
1	0	0	0	0	0	1
••	• •	• •	• •	• •	• •	• •

FSMs with Outputs

Additional outputs in truth table. Output on the corresponding state.

FSMs with Outputs

Additional outputs in truth table. Output on the corresponding state.

FSMs with Outputs

Additional outputs in truth table. Output on the corresponding state.

