COMP I22/L Lecture 27 Kyle Dewey

Outline

- Finite state machines

Finite State Machines

Finite State Machines

Basic idea: computation is done via traversal of states, where the states are known ahead of time.

Finite State Machines

Basic idea: computation is done via traversal of states, where the states are known ahead of time.

Example: Lock and Key

Example: Counting Change

Significance

- Can encode many problems using finite state machines (FSMs)
- FSMs can be implemented with sequential circuits
- Internals of processors can be encoded with FSMs

Significance

- Can encode many problems using finite state machines (FSMs)
- FSMs can be implemented with sequential circuits
- Internals of processors can be encoded with FSMs

FSMs to Circuits

Step I: Encode each state in binary

FSMs to Circuits

Step I: Encode each state in binary

FSMs to Circuits

Step I: Encode each state in binary

FSMs to Circuits

Step 2: Make truth table mapping current state to next state

FSMs to Circuits

Step 2: Make truth table mapping current state to next state

FSMs to Circuits

Step 2: Make truth table mapping current state to next state

S1	S0	N1	N0
0	0	0	1
0	1	1	0
1	0	0	0
1	1	X	X

FSMs to Circuits

Step 3: Simplify truth table (with Boolean algebra / K-maps)

FSMs to Circuits

Step 3: Simplify truth table (with Boolean algebra / K-maps)

				S1		For N1	
S1	SO	N1	NO	SO	0	1	
0	0	0	1	0	0	0	
0	1	1	0	1	1	X	
1	0	0	0				
1	1	X	X				

FSMs to Circuits

Step 3: Simplify truth table (with Boolean algebra / K-maps)

				S1		For N1
S1	S0	N1	N0	S0	0	1
0	0	0	1	0	0	0
0	1	1	0	1	1	X
1	0	0	0			
1	1	X	X			

FSMs to Circuits

Step 3: Simplify truth table (with Boolean algebra / K-maps)

				S1		For N1
S1	S0	N1	N0	S0	0	1
0	0	0	1	0	0	0
0	1	1	0	1	1	X
1	0	0	0			
1	1	X	X			

FSMs to Circuits

Step 4: Build sequential circuit

FSMs to Circuits

Step 4: Build sequential circuit

S1	S0	N1	N0
0	0	0	1
0	1	1	0
1	0	0	0
1	1	X	X
$N 0=!S 1!S 0$			
NO $=$ S 0			
N			

FSMs to Circuits

Step 4: Build sequential circuit

FSMs with External Inputs

Same process, but with more inputs in the truth table

FSMs with External Inputs

Same process, but with more inputs in the truth table

FSMs with External Inputs

Same process, but with more inputs in the truth table

$K I$	$K R$	$K T$	SI	S0	N1	N0
0	0	0	0	0	0	0
\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
1	0	0	0	0	0	1
\cdots						

FSMs with Outputs

Additional outputs in truth table.
Output on the corresponding state.

FSMs with Outputs

Additional outputs in truth table.
Output on the corresponding state.

FSMs with Outputs

Additional outputs in truth table.
Output on the corresponding state.

FSMs with Outputs

Additional outputs in truth table.
Output on the corresponding state.

Green 00	S1	SO	N1	NO	G	Y	R
	0	0	0	1	1	0	0
!GY!R	0	1	1	0	0	1	0
Red 10	1	0	0	0	0	0	1
G. MR	1	1	X	X	X	X	X

