
COMP 122/L Lecture 3
Kyle Dewey

Outline

• Operations on binary values

• Addition

• Subtraction

• Floating point introduction

Addition

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

6
+3
--
?

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

6
+3
--
9

8
+2
--
?

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

6
+3
--
9

8
+2
--
0

Carry: 1

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

6
+3
--
9

8
+2
--
0

1
9

+1
--
?

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

6
+3
--
9

8
+2
--
0

1
9

+1
--
1

Carry: 1

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

6
+3
--
9

8
+2
--
0

1
9

+1
--
1

1
+0
--
1

Core Concepts

• We have a “primitive” notion of adding
single digits, along with an idea of carrying
digits

• We can build on this notion to add
numbers together that are more than one
digit long

Now in Binary

• Arguably simpler - fewer one-bit possibilities

0
+0
--
?

0
+1
--
?

1
+0
--
?

1
+1
--
?

Now in Binary

• Arguably simpler - fewer one-bit possibilities

0
+0
--
0

0
+1
--
1

1
+0
--
1

1
+1
--
0

Carry: 1

Chaining the Carry
• Also need to account for any input carry

1
0

+0
--
1

1
0

+1
--
0

1
1

+0
--
0

1
1

+1
--
1

0
0

+0
--
0

0
0

+1
--
1

0
1

+0
--
1

0
1

+1
--
0

Carry: 1 Carry: 1 Carry: 1

Carry: 1

Adding Multiple Bits

• How might we add the numbers below?

 011
+001

Adding Multiple Bits

• How might we add the numbers below?

 011
+001

0

-Need an initial carry-in of zero

Adding Multiple Bits

• How might we add the numbers below?

 011
+001

0

0

1

-Need an initial carry-in of zero

Adding Multiple Bits

• How might we add the numbers below?

 011
+001

0

0

1

0

1

-Need an initial carry-in of zero

Adding Multiple Bits

• How might we add the numbers below?

 011
+001

0

0

1

0

1

1

0

-Need an initial carry-in of zero

Adding Multiple Bits

• How might we add the numbers below?

 011
+001

0

0

1

0

1

1

0

Output Carry Bit Result Bits

-Need an initial carry-in of zero

Another Example

 111
+001

Another Example

 111
+001

0

Another Example

 111
+001

0

0

1

Another Example

 111
+001

0

0

1

0

1

Another Example

 111
+001

0

0

1

0

1

0

1

Output Carry Bit Result Bits

-Now we have an output carry bit of 1. What does this mean?

Output Carry Bit
Significance

• For unsigned numbers, it indicates if the
result did not fit all the way into the
number of bits allotted

• May be an error condition for software

Signed Addition

• Question: what is the result of the
following operation?

011
+011

?

Signed Addition

• Question: what is the result of the
following operation?

011
+011

0110

-If these are treated as signed numbers in two’s complement, then we need a leading 0 to
indicate that this is a positive number
-Truncated to three bits, the result is a negative number!

Overflow

• In this situation, overflow occurred: this
means that both the operands had the
same sign, and the result’s sign differed

011
+011

110

• Possibly a software error

Overflow vs. Carry
• These are different ideas

• Carry is relevant to unsigned values

• Overflow is relevant to signed values

011
+011

110

Overflow;
No Carry

111
+001

000

No Overflow;
Carry

111
+100

011

Overflow;
Carry

001
+001

010

No Overflow;
No Carry

-As to when is it a problem, this all depends on exactly what it is you’re doing

Subtraction

Subtraction

• Have been saying to invert bits and add one
to second operand

• Could do it this way in hardware, but there
is a trick

001
-001

?

001
+111

?

Hint: these two
questions are

equivalent

Subtraction Trick

• Assume we can cheaply invert bits, but we
want to avoid adding twice (once to add 1
and once to add the other result)

• How can we do this easily?

Subtraction Trick

• Assume we can cheaply invert bits, but we
want to avoid adding twice (once to add 1
and once to add the other result)

• How can we do this easily?

• Set the initial carry to 1 instead of 0

Subtraction Example

0101
-0011

Subtraction Example

0101
-0011

Invert 0011

Subtraction Example

0101
-0011

Invert 0011
1100

Subtraction Example

0101
-0011

Invert 0011
1100

Equivalent to

Subtraction Example

0101
-0011

Invert 0011
1100

Equivalent to
0101

+1100

1

-An initial carry-in of 1 is equivalent to adding 1 and then adding the other operand

Subtraction Example

0101
-0011

Invert 0011
1100

Equivalent to
0101

+1100

1

0

1

1

0

0

1

0

1

-An initial carry-in of 1 is equivalent to adding 1 and then adding the other operand

Floating Point
Introduction

Question
How might we represent floating point numbers?

1.25

47.9

0.82

-A lot of different ways possible
-A whole lot of problems related to precision arise. Just about any representation devisable
will be complex.

Enter IEEE-754

• Standardized floating point representation
and operations

• Modern systems all use this

• Complex and weird

Enter IEEE-754

• Standardized floating point representation
and operations

• Modern systems all use this

• Complex and weird

min(X, Y) =? min(Y, X)

Enter IEEE-754

• Standardized floating point representation
and operations

• Modern systems all use this

• Complex and weird

min(X, Y) =? min(Y, X)

May or may not be true...

-Standard doesn’t enforce that this is true in general. Implementations are permitted to
make it so this isn’t true in all cases.

Basis
Based on the idea of scientific notation

Basis
Based on the idea of scientific notation

4.23 * 107

Basis
Based on the idea of scientific notation

4.23 * 107

Save these

Basis
Based on the idea of scientific notation

4.23 * 107

Save these

Caveat: this is in binary

1.1 * 2-1

Components

• Sign bit (+/-)

• Exponent

• Fraction / mantissa

1.1 * 2-1

-We’ll get more into representation next class; this is the birds-eye view of how this works
for now.

