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Outline

• Operations on binary values

• Addition

• Subtraction

• Floating point introduction



Addition
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Building Up Addition
• Question: how might we add the following, 

in decimal?
986
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----
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Core Concepts

• We have a “primitive” notion of adding 
single digits, along with an idea of carrying 
digits

• We can build on this notion to add 
numbers together that are more than one 
digit long



Now in Binary

• Arguably simpler - fewer one-bit possibilities
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Chaining the Carry
• Also need to account for any input carry

1
0

+0
--
1

1
0

+1
--
0

1
1

+0
--
0

1
1

+1
--
1

0
0

+0
--
0

0
0

+1
--
1

0
1

+0
--
1

0
1

+1
--
0

Carry: 1 Carry: 1 Carry: 1

Carry: 1
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Adding Multiple Bits

• How might we add the numbers below?

 011
+001

------

0

0

1

0

1

1

0

Output Carry Bit Result Bits

-Need an initial carry-in of zero



Another Example

 111
+001

------



Another Example

 111
+001

------

0



Another Example

 111
+001

------

0

0

1



Another Example

 111
+001

------

0

0

1

0

1



Another Example

 111
+001

------

0

0

1

0

1

0

1

Output Carry Bit Result Bits

-Now we have an output carry bit of 1.  What does this mean?



Output Carry Bit 
Significance

• For unsigned numbers, it indicates if the 
result did not fit all the way into the 
number of bits allotted

• May be an error condition for software



Signed Addition

• Question: what is the result of the 
following operation?
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----
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Signed Addition

• Question: what is the result of the 
following operation?

011
+011
----
0110

-If these are treated as signed numbers in two’s complement, then we need a leading 0 to 
indicate that this is a positive number
-Truncated to three bits, the result is a negative number!



Overflow

• In this situation, overflow occurred: this 
means that both the operands had the 
same sign, and the result’s sign differed

011
+011
----
110

• Possibly a software error



Overflow vs. Carry
• These are different ideas

• Carry is relevant to unsigned values

• Overflow is relevant to signed values

011
+011
----
110

Overflow; 
No Carry

111
+001
----
000

No Overflow; 
Carry

111
+100
----
011

Overflow; 
Carry

001
+001
----
010

No Overflow; 
No Carry

-As to when is it a problem, this all depends on exactly what it is you’re doing



Subtraction



Subtraction

• Have been saying to invert bits and add one 
to second operand

• Could do it this way in hardware, but there 
is a trick

001
-001
----

?

001
+111
----

?

Hint: these two
questions are

equivalent



Subtraction Trick

• Assume we can cheaply invert bits, but we 
want to avoid adding twice (once to add 1 
and once to add the other result)

• How can we do this easily?



Subtraction Trick

• Assume we can cheaply invert bits, but we 
want to avoid adding twice (once to add 1 
and once to add the other result)

• How can we do this easily?

• Set the initial carry to 1 instead of 0
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Subtraction Example

0101
-0011
----

Invert 0011
1100

Equivalent to
0101

+1100
----

1

0

1

1

0

0

1

0

1

-An initial carry-in of 1 is equivalent to adding 1 and then adding the other operand



Floating Point 
Introduction



Question
How might we represent floating point numbers?

1.25

47.9

0.82

-A lot of different ways possible
-A whole lot of problems related to precision arise.  Just about any representation devisable 
will be complex.



Enter IEEE-754

• Standardized floating point representation 
and operations

• Modern systems all use this

• Complex and weird
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Enter IEEE-754

• Standardized floating point representation 
and operations

• Modern systems all use this

• Complex and weird

min(X, Y) =? min(Y, X)

May or may not be true...

-Standard doesn’t enforce that this is true in general.  Implementations are permitted to 
make it so this isn’t true in all cases.
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Basis
Based on the idea of scientific notation

4.23 * 107

Save these

Caveat: this is in binary

1.1 * 2-1



Components

• Sign bit (+/-)

• Exponent

• Fraction / mantissa

1.1 * 2-1

-We’ll get more into representation next class; this is the birds-eye view of how this works 
for now.


