COMP I22/L Lecture 3
 Kyle Dewey

Outline

- Operations on binary values
- Addition
- Subtraction
- Floating point introduction

Addition

Building Up Addition

- Question: how might we add the following, in decimal?

$$
\begin{array}{r}
986 \\
+123 \\
---- \\
?
\end{array}
$$

Building Up Addition

- Question: how might we add the following, in decimal?

$$
\begin{array}{r}
986 \\
+123 \\
---- \\
?
\end{array}
$$

Building Up Addition

- Question: how might we add the following, in decimal?

$$
\begin{array}{r}
986 \\
+123 \\
---- \\
?
\end{array}
$$

Building Up Addition

- Question: how might we add the following, in decimal?

$$
\begin{array}{r}
986 \\
+123 \\
---- \\
?
\end{array}
$$

Carry: 1

Building Up Addition

- Question: how might we add the following, in decimal?

$$
\begin{array}{r}
986 \\
+123 \\
---- \\
?
\end{array}
$$

1	8	6
9	+2	+3
+1	--	--
--	0	9
$?$		

Building Up Addition

- Question: how might we add the following, in decimal?

$$
\begin{array}{r}
986 \\
+123 \\
---- \\
?
\end{array}
$$

Carry: 1

Building Up Addition

- Question: how might we add the following, in decimal?

$$
\begin{array}{r}
986 \\
+123 \\
---- \\
?
\end{array}
$$

Core Concepts

- We have a"primitive" notion of adding single digits, along with an idea of carrying digits
- We can build on this notion to add numbers together that are more than one digit long

Now in Binary

- Arguably simpler - fewer one-bit possibilities

0	0	1	1
+0	+1	+0	+1
--	--	--	--
$?$	$?$	$?$	$?$

Now in Binary

- Arguably simpler - fewer one-bit possibilities

0	0	1	1
+0	+1	+0	+1
--	--	--	--
0	1	1	0
			Carry: 1

Chaining the Carry

- Also need to account for any input carry

0	0		0		0
0	0		1		1
+0	+1		+0		+1
--	--		--		--
0	1		1		0
1	1		1		1
0	0		1		1
+0	+1		+0		+1
--	--		--		--
1	0	Carry: 1	0	Carry: 1	1 Carry: 1

Adding Multiple Bits

- How might we add the numbers below?

$$
\begin{array}{r}
011 \\
+001 \\
------1
\end{array}
$$

Adding Multiple Bits

- How might we add the numbers below?

> 0
> 011
> +001
> ------

Adding Multiple Bits

- How might we add the numbers below?

Adding Multiple Bits

- How might we add the numbers below?

$$
\begin{array}{r}
110 \\
011 \\
+001 \\
-----\quad-1
\end{array}
$$

Adding Multiple Bits

- How might we add the numbers below?

$$
\begin{array}{r}
0110 \\
011 \\
+001 \\
------100
\end{array}
$$

Adding Multiple Bits

- How might we add the numbers below?

Another Example

111
+001

Another Example

111
+001

Another Example

10
111
+001

Another Example

110
111
+001

Another Example

Output Carry Bit Significance

- For unsigned numbers, it indicates if the result did not fit all the way into the number of bits allotted
- May be an error condition for software

Signed Addition

- Question: what is the result of the following operation?

$$
\begin{array}{r}
011 \\
+011 \\
---- \\
?
\end{array}
$$

Signed Addition

- Question: what is the result of the following operation?

$$
\begin{array}{r}
011 \\
+011 \\
---- \\
0110
\end{array}
$$

Overflow

- In this situation, overflow occurred: this means that both the operands had the same sign, and the result's sign differed

$$
\begin{array}{r}
011 \\
+011 \\
---- \\
110
\end{array}
$$

- Possibly a software error

Overflow vs. Carry

- These are different ideas
- Carry is relevant to unsigned values
- Overflow is relevant to signed values

111	011	111	001
+001	+011	+100	+001
----	----	----	----
000	110	011	010
No Overflow;	Overflow;	Overflow;	No Overflow;
Carry	No Carry	Carry	No Carry

Subtraction

Subtraction

- Have been saying to invert bits and add one to second operand
- Could do it this way in hardware, but there is a trick

Subtraction Trick

- Assume we can cheaply invert bits, but we want to avoid adding twice (once to add I and once to add the other result)
- How can we do this easily?

Subtraction Trick

- Assume we can cheaply invert bits, but we want to avoid adding twice (once to add I and once to add the other result)
- How can we do this easily?
- Set the initial carry to 1 instead of 0

Subtraction Example

$$
\begin{array}{r}
0101 \\
-0011 \\
-\quad-1
\end{array}
$$

Subtraction Example

0101 Invert 0011
 -0011

Subtraction Example

> 0101 -0011 $\xrightarrow{\text { Invert } 0011} 1100$

Subtraction Example

Invert 0011
Equivalent to
$\longrightarrow 1100$

Subtraction Example

Subtraction Example

Floating Point Introduction

Question

How might we represent floating point numbers?

$$
\begin{aligned}
& 1.25 \\
& 47.9 \\
& 0.82
\end{aligned}
$$

Enter IEEE-754

- Standardized floating point representation and operations
- Modern systems all use this
- Complex and weird

Enter IEEE-754

- Standardized floating point representation and operations
- Modern systems all use this
- Complex and weird

$$
\min (X, Y)=? \min (Y, X)
$$

Enter IEEE-754

- Standardized floating point representation and operations
- Modern systems all use this
- Complex and weird

$$
\min (X, Y)=? \min (Y, X)
$$

May or may not be true...

Basis

Based on the idea of scientific notation

Basis

Based on the idea of scientific notation

$$
4.23 * 10^{7}
$$

Basis

Based on the idea of scientific notation

$$
4.23 * 10^{7}
$$

Save these

Basis

Based on the idea of scientific notation

$$
4.23 * 10^{7}
$$

Save these

Caveat: this is in binary

$$
1.1 * 2^{-1}
$$

Components

$$
1.1 * 2^{-1}
$$

- Sign bit (+/-)
- Exponent
- Fraction / mantissa

