
COMP 122/L Lecture 3
Kyle Dewey



Outline

• Operations on binary values

• Addition

• Subtraction

• Floating point introduction



Addition



Building Up Addition
• Question: how might we add the following, 

in decimal?
986

+123
----

?



Building Up Addition
• Question: how might we add the following, 

in decimal?
986

+123
----

?

6
+3
--
?



Building Up Addition
• Question: how might we add the following, 

in decimal?
986

+123
----

?

6
+3
--
9

8
+2
--
?



Building Up Addition
• Question: how might we add the following, 

in decimal?
986

+123
----

?

6
+3
--
9

8
+2
--
0

Carry: 1



Building Up Addition
• Question: how might we add the following, 

in decimal?
986

+123
----

?

6
+3
--
9

8
+2
--
0

1
9

+1
--
?



Building Up Addition
• Question: how might we add the following, 

in decimal?
986

+123
----

?

6
+3
--
9

8
+2
--
0

1
9

+1
--
1

Carry: 1



Building Up Addition
• Question: how might we add the following, 

in decimal?
986

+123
----

?

6
+3
--
9

8
+2
--
0

1
9

+1
--
1

1
+0
--
1



Core Concepts

• We have a “primitive” notion of adding 
single digits, along with an idea of carrying 
digits

• We can build on this notion to add 
numbers together that are more than one 
digit long



Now in Binary

• Arguably simpler - fewer one-bit possibilities

0
+0
--
?

0
+1
--
?

1
+0
--
?

1
+1
--
?



Now in Binary

• Arguably simpler - fewer one-bit possibilities

0
+0
--
0

0
+1
--
1

1
+0
--
1

1
+1
--
0

Carry: 1



Chaining the Carry
• Also need to account for any input carry

1
0

+0
--
1

1
0

+1
--
0

1
1

+0
--
0

1
1

+1
--
1

0
0

+0
--
0

0
0

+1
--
1

0
1

+0
--
1

0
1

+1
--
0

Carry: 1 Carry: 1 Carry: 1

Carry: 1



Adding Multiple Bits

• How might we add the numbers below?

 011
+001

------



Adding Multiple Bits

• How might we add the numbers below?

 011
+001

------

0



Adding Multiple Bits

• How might we add the numbers below?

 011
+001

------

0

0

1



Adding Multiple Bits

• How might we add the numbers below?

 011
+001

------

0

0

1

0

1



Adding Multiple Bits

• How might we add the numbers below?

 011
+001

------

0

0

1

0

1

1

0



Adding Multiple Bits

• How might we add the numbers below?

 011
+001

------

0

0

1

0

1

1

0

Output Carry Bit Result Bits



Another Example

 111
+001

------



Another Example

 111
+001

------

0



Another Example

 111
+001

------

0

0

1



Another Example

 111
+001

------

0

0

1

0

1



Another Example

 111
+001

------

0

0

1

0

1

0

1

Output Carry Bit Result Bits



Output Carry Bit 
Significance

• For unsigned numbers, it indicates if the 
result did not fit all the way into the 
number of bits allotted

• May be an error condition for software



Signed Addition

• Question: what is the result of the 
following operation?

011
+011
----

?



Signed Addition

• Question: what is the result of the 
following operation?

011
+011
----
0110



Overflow

• In this situation, overflow occurred: this 
means that both the operands had the 
same sign, and the result’s sign differed

011
+011
----
110

• Possibly a software error



Overflow vs. Carry
• These are different ideas

• Carry is relevant to unsigned values

• Overflow is relevant to signed values

011
+011
----
110

Overflow; 
No Carry

111
+001
----
000

No Overflow; 
Carry

111
+100
----
011

Overflow; 
Carry

001
+001
----
010

No Overflow; 
No Carry



Subtraction



Subtraction

• Have been saying to invert bits and add one 
to second operand

• Could do it this way in hardware, but there 
is a trick

001
-001
----

?

001
+111
----

?

Hint: these two
questions are

equivalent



Subtraction Trick

• Assume we can cheaply invert bits, but we 
want to avoid adding twice (once to add 1 
and once to add the other result)

• How can we do this easily?



Subtraction Trick

• Assume we can cheaply invert bits, but we 
want to avoid adding twice (once to add 1 
and once to add the other result)

• How can we do this easily?

• Set the initial carry to 1 instead of 0



Subtraction Example

0101
-0011
----



Subtraction Example

0101
-0011
----

Invert 0011



Subtraction Example

0101
-0011
----

Invert 0011
1100



Subtraction Example

0101
-0011
----

Invert 0011
1100

Equivalent to



Subtraction Example

0101
-0011
----

Invert 0011
1100

Equivalent to
0101

+1100
----

1



Subtraction Example

0101
-0011
----

Invert 0011
1100

Equivalent to
0101

+1100
----

1

0

1

1

0

0

1

0

1



Floating Point 
Introduction



Question
How might we represent floating point numbers?

1.25

47.9

0.82



Enter IEEE-754

• Standardized floating point representation 
and operations

• Modern systems all use this

• Complex and weird



Enter IEEE-754

• Standardized floating point representation 
and operations

• Modern systems all use this

• Complex and weird

min(X, Y) =? min(Y, X)



Enter IEEE-754

• Standardized floating point representation 
and operations

• Modern systems all use this

• Complex and weird

min(X, Y) =? min(Y, X)

May or may not be true...



Basis
Based on the idea of scientific notation



Basis
Based on the idea of scientific notation

4.23 * 107



Basis
Based on the idea of scientific notation

4.23 * 107

Save these



Basis
Based on the idea of scientific notation

4.23 * 107

Save these

Caveat: this is in binary

1.1 * 2-1



Components

• Sign bit (+/-)

• Exponent

• Fraction / mantissa

1.1 * 2-1


