COMP 122/L Lecture 3

Kyle Dewey

Outline

- Operations on binary values
 - Addition
 - Subtraction
- Floating point introduction

Addition

• Question: how might we add the following, in decimal?

986 +123 ----?

• Question: how might we add the following, in decimal?

986 +123 ----

• Question: how might we add the following, in decimal?

986 +123 ____?

• Question: how might we add the following, in decimal?

986 +123 ----

Carry: 1	8	6
	+2	+3
		— —
	0	9

• Question: how might we add the following, in decimal?

986 +123 ----

• Question: how might we add the following, in decimal?

986 +123 ----

?

• Question: how might we add the following, in decimal?

986 +123 ----?

Core Concepts

- We have a "primitive" notion of adding single digits, along with an idea of *carrying* digits
- We can build on this notion to add numbers together that are more than one digit long

Now in Binary

• Arguably simpler - fewer one-bit possibilities

Now in Binary

• Arguably simpler - fewer one-bit possibilities

Chaining the Carry

• Also need to account for any input carry

0	0		0		0	
0	0		1		1	
+0	+1		+0		+1	
— —	——					
0	1		1		0	Carry: 1
1	1		1		1	
0	0		1		1	
+0	+1		+0		+1	
——						
1	0	Carry: 1	0	Carry: 1	1	Carry: 1

• How might we add the numbers below?

011

+001

• How might we add the numbers below?

• How might we add the numbers below?

• How might we add the numbers below?

110 011 +001 _____

• How might we add the numbers below?

0110 011 +001 _____

• How might we add the numbers below?

111 +001

0 111 +001

10 111 +001 _____

110 111 +001 _____

Output Carry Bit Significance

- For unsigned numbers, it indicates if the result did not fit all the way into the number of bits allotted
- May be an error condition for software

Signed Addition

• Question: what is the result of the following operation?

Signed Addition

• Question: what is the result of the following operation?

Overflow

• In this situation, overflow occurred: this means that both the operands had the same sign, and the result's sign differed

• Possibly a software error

Overflow vs. Carry

- These are **different ideas**
 - Carry is relevant to **unsigned** values
 - Overflow is relevant to **signed** values

No Overflow; Carry	Overflow; No Carry	Overflow; Carry	No Overflow; No Carry
000	110	011	010
111 +001 	011 +011 	111 +100 	001 +001

Subtraction

Subtraction

- Have been saying to invert bits and add one to second operand
- Could do it this way in hardware, but there is a trick

Subtraction Trick

- Assume we can cheaply invert bits, but we want to avoid adding twice (once to add 1 and once to add the other result)
- How can we do this easily?

Subtraction Trick

- Assume we can cheaply invert bits, but we want to avoid adding twice (once to add 1 and once to add the other result)
- How can we do this easily?
 - Set the initial carry to 1 instead of 0

Subtraction Example

0101 -0011

Subtraction Example

Floating Point Introduction

Question

How might we represent floating point numbers?

1.25 47.9 0.82

Enter IEEE-754

- Standardized floating point representation and operations
- Modern systems all use this
- Complex and weird

Enter IEEE-754

- Standardized floating point representation and operations
- Modern systems all use this
- Complex and weird

$$min(X, Y) =? min(Y, X)$$

Enter IEEE-754

- Standardized floating point representation and operations
- Modern systems all use this
- Complex and weird

Based on the idea of scientific notation

Based on the idea of scientific notation

4.23 * 10⁷

Based on the idea of scientific notation

4.23 × 10⁷

Save these

Based on the idea of scientific notation

Save these

Caveat: this is in binary

1.1 * 2-1

Components

1.1 * 2-1

- Sign bit (+/-)
- Exponent
- Fraction / mantissa