COMP 122/L Lecture 6

Kyle Dewey

Assembly

What’s in a Processor?

Simple Language

® We have variables, integers, addition, and
assignment

® Restrictions:

® Can only assign integers directly to
variables

® Can only add variables, always two at a
time

Want to say: Translation

= 5 + 7;

Implementation

® What do we need to implement this!?

o
75
X + Vy

Core Components

Some place to hold the statements as we
operate on them

Some place to hold which statement is
hext

Some place to hold variables

Some way to add numbers

Back to Processors

® Amazingly, these are all the core
components of a processor

® Why is this significant?

Back to Processors

® Amazingly, these are all the core
components of a processor

® Why is this significant?

® Processors just reads a series of statements
(instructions) forever. No magic.

Core Components

Some place to hold the statements as we
operate on them

Some place to hold which statement is
hext

Some place to hold variables

Some way to add numbers

Core Components

Some place to hold the statements as we
operate on them - memory

Some place to hold which statement is next -
program counter

Some place to hold variables - registers

® Behave just like variables with fixed names

Some way to add numbers - arithmetic
logic unit (ALU)

Some place to hold which statement is
currently being executed - instruction
register (IR)

Basic Interaction

Copy instruction from memory at
wherever the program counter says into
the instruction register

Execute it, possibly involving registers and
the arithmetic logic unit

Update the program counter to point to
the next instruction

Repeat

Basic Interaction

initialize();
while (true) {
instruction register =
memory |[program counter];
execute (1lnstruction register);
program countert+t;

}

Instruction Register Registers

Instruction Register Registers

Instruction Register Registers

Instruction Register Registers

Instruction Register Registers

Instruction Register Registers

Instruction Register Registers

Instruction Register Registers

Instruction Register Registers

Instruction Register Registers

Instruction Register Registers

ARM

Why ARM?

® |ncredibly popular in embedded devices

® Much simpler than Intel processors

Code on ARM

Original ARM

mov r(0, #5
mov rl, #7

add r2, r0, rl

oF:
/5
X + Vy

Code on ARM

Original ARM

mov r0O, #5
mov rl, #7

add r2, r0, rl

oF:
/5
X + Vy

move: put the given value
Into a register

roO: register O

Code on ARM

Original ARM

mov r(0, #5
mov rl, #7
add r2, r0, rl

oF:
/5
X + Vy

move: put the given value
Into a register

rl:register |

Code on ARM

Original

ol
7

X + Vy

ARM

mov r(0, #5
mov rl, #7
add r2, r0, rl

add: add the rightmost

registers, putting the result
in the first register

r2: register 2

Available Registers

® |/ registers in all
® |6 “general-purpose”
® | “special-purpose”

® For the moment, we will only consider
registers r(O - r12

Assembly

® The code that you see below is ARM
assembly

® Assembly is *almost™ what the machine
sees. For the most part, it is a direct
translation to binary from here (known as
machine code)

mov r(0, #5
mov rl, #7
add r2, r0, rl

Workflow

Assembly

mov r(0, #5
mov rl, #7

add r2, r0, rl

Assembler
(analogous to a compiler)

v

Machine Code

001101....

Machine Code

® This is what the process actually executes
and accepts as input

® Each instruction is represented with 32 bits

add r2, r0, rl

Instruction Register Registers

Instruction Register Registers

St e e senl)

Instruction Register Registers

St e e senl)

Instruction Register Registers

St e e senl)

Instruction Register Registers

St e e senl)

Instruction Register Registers

St e e senl)

Instruction Register Registers

St e e senl)

Instruction Register Registers

SO A . LA

St e e senl)

Instruction Register Registers

SO A . LA

St e e senl)

Instruction Register Registers

SO A . LA

St e e senl)

Adding More
Functionality

® VWe need a way to display the result

® VWhat does this entail?

Adding More
Functionality

® VWe need a way to display the result

® VWhat does this entail?

® |nput/ output. This entails talking to
devices, which the operating system

handles

® VWe need a way to tell the operating
system to kick in

Talking to the OS

® We are going to be running on an ARM
simulator, ARMSim#

® We cannot directly access system libraries
(they aren’t even in the same machine
language)

® How might we print something!?

ARMSim# Routines

® ARM features a swi instruction, which
triggers a software interrupt

® Qutside of a simulator, these pause the

program and tell the OS to check
something

® |nside the simulator, it tells the simulator
to check something

® So we have the OS/simulator’s attention.
But how does it know what we want?

SW L

® So we have the OS/simulator’s attention.
But how does it know what we want?

® swi operand:integer saying what to do

® [The OS/simulator can also read the
registers to get extra information as
heeded

(Finally) Printing an
Integer

® For ARMSIm#, the integer that says “print
an integer”’ is 0xX6B

® Register r1 holds the integer to print

® Register rO holds where to print it; 1
means “print to standard output (screen)”

Augmenting with
Printing

#5
#7
rO, rl

r2 ; rl: integer to print
#1 ; r0O: where to print it
; O0x6B: print integer

EXiting

® |f you are using ARMSim#, then you need to
say when you are done as well

® How might this be done!

EXiting

® |f you are using ARMSim#, then you need to
say when you are done as well

® How might this be done!

® swi with a particular operand
(specifically 0x11)

Augmenting with Exiting

mov
mov

add
mov
mov

SW1

SwW1l

r0,
rl,
r2,

rl,
r0,

Ox0R

Ox11

#5
'/

r0,

r2
#1

rl
rl: i1nteger to print
rO: where to print 1t

Ox6B: print 1nteger

O0x1l: exit program

Making it a Full
Program

® Everything is just a bunch of bits

® We need to tell the assembler which bits
should be placed where in memory

Heap

Initialized Data

Uninitialized Data
(BSS)

Allocated as
Program Runs

Heap

Initialized Data

Uninitialized Data
(BSS)

Everything
Below is
Allocated at
Program Load

|

Constants
(e.g., strings)

!

Free Memory

1

Heap

[~ [/

Initialized Data

Allocated as
Program Runs

Mutable Global
Variables

Uninitialized Data
(BSS)

Code

Marking Code

Use a . text directive to specify code section

Stack

.text
v mov r0, #5
Free Memory mov rl y #‘ '/
T add r2, r0, rl

Heap

rl, r2
rO, #1

Initialized Data

Uninitialized Data
(BSS)

Marking Code

Use a . data directive to specify data section

Stack

\4

Free Memory

1

Heap

Initialized Data

Uninitialized Data
(BSS)

.data
stringl:

.asclz “hello”
string?2:

.asciz “bye”

ARMSim# Demo:

hello.s

ARMSim# Demo:

arithmetic ops.s

ARMSim# Demo:

read and print int.s

