
COMP 122/L Lecture 1
Kyle Dewey

About Me

• My research:

• Automated program testing + CS education

• Programming language design (with JPL)

• Lots of experience with functional and logic
programming

• Second time teaching this class, fourth time
teaching this content

About this Class

• See something wrong? Want something
improved? Email me about it!
(kyle.dewey@csun.edu)

• I generally operate based on feedback

mailto:kyle.dewey@csun.edu

Bad Feedback

• This guy sucks.

• This class is boring.

• This material is useless.

Good Feedback

• This guy sucks, I can’t read his writing.

• This class is boring, it’s way too slow.

• This material is useless, I don’t see how it
relates to anything in reality.

• I can’t fix anything if I don’t know what’s
wrong

What's this Class About?

int main() {
 ...
}
bool z = x && y;

while (...) {
 ...
}

Software / hardware interface

Class Structure

• Numerical representation (what do we
represent numbers on the machine?)

• Numerical operations (how does the
processor do numeric operations?)

• Assembly (how do we talk directly to the
processor?)

• Circuits (how can we build a processor?)

Class Motivation

public static void
main(String[] args) {
 ...
}

public static void
main(String[] args) {
 ...
}

3.14956

public static void
main(String[] args) {
 ...
}

3.14956

public static void
main(String[] args) {
 ...
}

3.14956

More Efficient
Algorithms

public static void
main(String[] args) {
 ...
}

3.14956

More Efficient
Algorithms

public static void
main(String[] args) {
 ...
}

Why are things still
slow?

The magic box isn’t so
magic

Array Access

• Constant time! (O(1))

• Where the random in random access
memory comes from!

arr[x]

Array Access

• Constant time! (O(1))

• Where the random in random access
memory comes from!

arr[x]

Array Access

• Memory is loaded as chunks into caches

• Cache access is much faster (e.g., 10x)

• Iterating through an array is fast

• Jumping around randomly is slow

• Can make code exponentially faster

Instruction Ordering

int x = a + b;
int y = c * d;
int z = e - f;

int z = e - f;
int y = c * d;
int x = a + b;

Instruction Ordering

int x = a + b;
int y = c * d;
int z = e - f;

int z = e - f;
int y = c * d;
int x = a + b;

3 Milliseconds? 3 Milliseconds?

Instruction Ordering

int x = a + b;
int y = c * d;
int z = e - f;

int z = e - f;
int y = c * d;
int x = a + b;

3 Milliseconds? 3 Milliseconds?

Instruction Ordering
• Modern processors are pipelined, and can

execute sub-portions of instructions in
parallel

• Depends on when instructions are
encountered

• Some can execute whole instructions in
different orders

• Processors executing x86(_64) are complex

The Point
• If you really want performance, you need to

know how the magic works

• “But it scales!” - restrictions apply

• Chrome is fast for a reason

• If you want to write a naive compiler, you need
to know some low-level details

• If you want to write a fast compiler, you need
to know tons of low-level details

So Why Circuits?

So Why Circuits?

• Basically, circuits are the programming
language of hardware

• Yes, everything goes back to physics

So Why Circuits?

Lecture vs. Lab

• They're graded as if it's one class (single
grade)

• Many days won't be a 35 minute lecture
with a 35 minute lab (depends on where
we are and what we're doing)

• Sometimes more lecture will be needed,
other times more lab is needed

Syllabus

Working with Different
Bases

Base-10 (Decimal)

• Our number system is base-10; we have
10 possible digits for each position in a
number: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

• 192, 9034, 42, 118, ...

• Why?

Base-2 (Binary)

• Only two digits: 0, 1

• 010, 1101, 11100101, ...

• Extremely popular in computing - why?

Why Care?

• Processors natively "speak" binary

• If you want to speak directly to the
processor, you have to speak it's language
(to some degree)

What’s In a Number?

• Question: why exactly does 123 have the
value 123? As in, what does it mean?

What’s In a Number?

123

What’s In a Number?

321

What’s In a Number?

321

OnesTensHundreds

What’s In a Number?

321

OnesTensHundreds

100 10 10 1 1 1

Question
• Why did we go to tens? Hundreds?

321

OnesTensHundreds

100 10 10 1 1 1

Answer
• Because we are in decimal (base 10)

321

OnesTensHundreds

100 10 10 1 1 1

Another View

123

Another View

321

Another View

321

3 x 1002 x 1011 x 102

Conversion from Some
Base to Decimal

• Involves repeated division by the value of
the base

• From right to left: list the remainders

• Continue until 0 is reached

• Final value is result of reading
remainders from bottom to top

• For example: what is 231 decimal to
decimal?

Conversion from Some
Base to Decimal

231

Conversion from Some
Base to Decimal

231
23

Remainder

1
10

Conversion from Some
Base to Decimal

231
23

Remainder

1
10
10

2 3

Conversion from Some
Base to Decimal

231
23

Remainder

1
10
10

2 310
0 2

Now for Binary

• Binary is base 2

• Useful because circuits are either on or off,
representable as two states, 0 and 1

Now for Binary

1010

Now for Binary

1 0 1 0

Now for Binary

1 0 1 0

OnesTwosFoursEights

Now for Binary

1 0 1 0

OnesTwosFoursEights

0 x 201 x 210 x 221 x 23

8 20 0

Question

• What is binary 0101 as a decimal number?

Answer
• What is binary 0101 as a decimal number?

• 5

0 1 0 1

OnesTwosFoursEights

1 x 200 x 211 x 220 x 23

0 04 1

From Decimal to Binary

• What is decimal 57 to binary?

From Decimal to Binary

57

From Decimal to Binary

57
28

Remainder

1
2

From Decimal to Binary

57
28

Remainder

1
2
2

14 0

From Decimal to Binary

57
28

Remainder

1
2
2

14 0
7

2
0

From Decimal to Binary

57
28

Remainder

1
2
2

14 0
7

2
0

3
2

1

From Decimal to Binary

57
28

Remainder

1
2
2

14 0
7

2
0

3
2

12
1 1

From Decimal to Binary

57
28

Remainder

1
2
2

14 0
7

2
0

3
2

12
1 12
0 1

Hexadecimal

• Base 16

• Binary is horribly inconvenient to write out

• Easier to convert between hexadecimal
(which is more convenient) and binary

• Each hexadecimal digit maps to four
binary digits

• Can just memorize a table

Hexadecimal

• Digits 0-9, along with A (10), B (11), C (12),
D (13), E (14), F (15)

Hexadecimal Example

• What is 1AF hexadecimal in decimal?

Hexadecimal Example

FA1

Hexadecimal Example

FA1

OnesSixteensTwo-fifty-sixes

Hexadecimal Example

FA1

1 x 162 10 x 161 15 x 160

OnesSixteensTwo-fifty-sixes

Hexadecimal Example

FA1

1 x 162 10 x 161 15 x 160

OnesSixteensTwo-fifty-sixes

256

16 16 16 16 16
16 16 16 16 16

(160)

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

(15)

Hexadecimal to Binary

• Previous techniques all work, using decimal
as an intermediate

• The faster way: memorize a table (which
can be easily reconstructed)

Hexadecimal to Binary

Hexadecimal Binary

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Hexadecimal Binary

8 1000
9 1001

A (10) 1010
B (11) 1011
C (12) 1100
D (13) 1101
E (14) 1110
F (15) 1111

