
COMP 122/L Lecture 3
Kyle Dewey

Outline

• Floating point numbers

Question
How might we represent floating point numbers?

1.25

47.9

0.82

-A lot of different ways possible

-A whole lot of problems related to precision arise. Just about any representation devisable will be complex.

Enter IEEE-754

• Standardized floating point representation
and operations

• Modern systems all use this

• Complex and weird

Enter IEEE-754

• Standardized floating point representation
and operations

• Modern systems all use this

• Complex and weird

min(X, Y) =? min(Y, X)

Enter IEEE-754

• Standardized floating point representation
and operations

• Modern systems all use this

• Complex and weird

min(X, Y) =? min(Y, X)

May or may not be true...

-Standard doesn’t enforce that this is true in general. Implementations are permitted to make it so this isn’t true in all cases.

Basis
Based on the idea of scientific notation

Basis
Based on the idea of scientific notation

4.23 * 107 -8.7 * 102 14.6 * 10-5 -9.4 * 10-18

Basis
Based on the idea of scientific notation

Caveat: use powers of two

1.1 * 2-1

4.23 * 107 -8.7 * 102 14.6 * 10-5 -9.4 * 10-18

Basis
Based on the idea of scientific notation

1.1 * 2-1

4.23 * 107 -8.7 * 102 14.6 * 10-5 -9.4 * 10-18

Additional caveat: numbers are always in the form:
+/- 1.XXX * 2YYYY

Caveat: use powers of two

Components
+/- 1.XXX * 2YYYY

sign bit
fraction

(AKA mantissa)
exponent

-Image from: https://en.wikipedia.org/wiki/IEEE_754

Components
+/- 1.XXX * 2YYYY

sign bit
fraction

(AKA mantissa)
exponent

• More bits for fraction and exponent mean
greater range and precision

• Most common: 32 bits (binary32 / float)
and 64 bits (binary64 / double)

-Image from: https://en.wikipedia.org/wiki/IEEE_754

Components
+/- 1.XXX * 2YYYY

sign bit
fraction

(AKA mantissa)
exponent

• More bits for fraction and exponent mean
greater range and precision

• Most common: 32 bits (binary32 / float)
and 64 bits (binary64 / double)

float

-Image from: https://en.wikipedia.org/wiki/IEEE_754

Question

Standard says: Sign
Bit Exponent Fraction

+/- 1.XXX * 2YYYY

sign bit
fraction

(AKA mantissa)
exponent

Why this order?

Question

Standard says: Sign
Bit Exponent Fraction

+/- 1.XXX * 2YYYY

sign bit
fraction

(AKA mantissa)
exponent

Why this order?

(Usually) preserves order even if compared as a two's
complement integer

Sign Bit
0 = positive; 1 = negative

Question: What about 0?

Sign Bit
0 = positive; 1 = negative

Question: What about 0?

Both positive and negative zero (quirk).

Fraction Value
Recall: each bit for integers represents a power of two:

1 0 0 1

1 * 2^3 0 * 2^2 0 * 2^1 1 * 2^0

8 0 0 1

Same idea for fractional part, but with negative exponents:

0 1 1 0
0 * 2^-1 1 * 2^-2 1 * 2^-3 1 * 2^-4

0 0.25 0.125 0

= 9

= 0.375

1001

XXXX.0110

Exponent Value

• Always written as an unsigned number, even
for negative exponents

• Uses a biased representation: the actual
exponent is always (written exponent - 127)

• If written exponent is 120, the actual
exponent is (120 - 127) = -7

Putting it All Together

• Sign: 0 (positive)

• Exponent: 4 + 8 + 16 + 32 + 64 = 124; 124 - 127 = -3

• Fraction: 0 * 2-1 + 1 * 2-2 = 0.25

• Overall magnitude: (1 + 0.25) * 2-3 = 0.15625

+/- 1.XXX * 2YYYY
The 1 is implicit in the encoding

Decimal Floating-point
to Binary Floating-point

Floating-point
Conversion

• Basic idea: determine the correct sign bit,
exponent, and fractional part to use, and
stitch them together

• Eight-step algorithm for this

• Running example: -9.5625

Step 1: Determine Sign
Bit

• -9.5625 is negative

• Sign bit is 1 for negative values

Step 2: Convert Integral
Part to Unsigned Binary

• -9.5625's integral portion is 9

• 9 = 1001

• No need to add padding or anything else
(yet)

Step 3: Convert
Fractional Part to Binary

• -9.5625's fractional portion is 0.5625

• Determine which negative powers of two
(2-1, 2-2, 2-3, ...) will sum up to this number,
or at least as closely as possible to this
number

• Pseudocode algorithm on next side can be
used for this

fraction = 0.5625

num_iterations = 0

bits = ""

while fraction != 0 and

 num_iterations < 23:

 fraction *= 2

 num_iterations++

 if fraction >= 1.0:

 bits += "1"

 fraction -= 1.0

 else:

 bits += "0"

Step 3: Algorithm with
Example

0.5625

Iteration Calculation >= 1.0? Output Bit

1 0.5625 * 2 =
1.125 yes 1

2 0.125 * 2 = 0.25 no 0

3 0.25 * 2 = 0.5 no 0

4 0.5 * 2 = 1.0 yes 1

Step 4: Normalize Value

• Recall: the encoding assumes numbers are
always in the format +/- 1.XXX * 2YYYY

• We need to put the number in this form

• Integral part (step 2): 1001

• Fractional part (step 3): 1001

• Number overall: integral.fractional: 1001.1001

Step 4: Normalize Value

• To get 1001.1001 into the expected 1.XXX
* 2YYYY format, we need to move the dot to
the left 3 positions

• Moves to the left denote positive
exponents, moves to the right are negative

• Overall: exponent: 3

Step 5: Add Bias to
Exponent

• Exponent (from step 4): 3

• Recall: exponents are stored in biased form,
and we will always subtract 127 from this
value later

• ...so here, we always add 127: 3 + 127 = 130

Step 6: Convert Biased
Exponent to Binary

• Biased exponent (step 5): 130

• 130 in binary: 1000 0010

Step 7: Determine Final
Mantissa Bits

• Needed: exactly 23 mantissa bits

• From step 4, we initially had 1001.1001,
then moved the dot to the left to get
1.0011001

• First bits of mantissa here will thus be
0011001

Step 7: Remaining
Mantissa Bits

• Initial bits: 0011001

• If algorithm in step 3 terminated with 1.0, the number
is getting represented exactly, with no precision loss.
Pad zeros on right until 23 bits.

• May need additional algorithm iterations if some
precision loss happened

• Depending on how exponent moved, some bits on the
right may also need to be removed (precision loss)

Step 7: Remaining
Mantissa Bits

• Initial bits: 0011001

• Algorithm terminated exactly, so we can
pad with zeros. Final mantissa:

• 0011 0010 0000 0000 0000 000

Step 8: Combine
Everything

• Sign bit (step 1): 1

• Exponent bits (step 6): 1000 0010

• Mantissa bits (step 7): 0011 0010 0000
0000 0000 000

• Overall: 1 1000 0010 0011 0010 0000 0000
0000 000 (copy/pasting all components)

• Or: 1100 0001 0001 1001 0000 0000
0000 0000 (spaces every nibble)

Further Examples /
Explanation

• There is also a link named "Instructions for
Converting Between Decimal and Binary
Floating-Point Numbers" linked off of the
course website

• Covers the same thing, but says it a
little differently, and has additional
examples and links

