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Outline

• Floating point numbers



Question
How might we represent floating point numbers?
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-A lot of different ways possible

-A whole lot of problems related to precision arise.  Just about any representation devisable will be complex.



Enter IEEE-754

• Standardized floating point representation 
and operations


• Modern systems all use this


• Complex and weird



Enter IEEE-754

• Standardized floating point representation 
and operations


• Modern systems all use this


• Complex and weird

min(X, Y) =? min(Y, X)



Enter IEEE-754

• Standardized floating point representation 
and operations


• Modern systems all use this


• Complex and weird

min(X, Y) =? min(Y, X)

May or may not be true...

-Standard doesn’t enforce that this is true in general.  Implementations are permitted to make it so this isn’t true in all cases.
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Basis
Based on the idea of scientific notation

1.1 * 2-1

4.23 * 107 -8.7 * 102 14.6 * 10-5 -9.4 * 10-18

Additional caveat: numbers are always in the form: 
+/- 1.XXX * 2YYYY

Caveat: use powers of two
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Components
+/- 1.XXX * 2YYYY

sign bit
fraction


(AKA mantissa)
exponent

• More bits for fraction and exponent mean 
greater range and precision


• Most common: 32 bits (binary32 / float) 
and 64 bits (binary64 / double)

float

-Image from: https://en.wikipedia.org/wiki/IEEE_754



Question

Standard says: Sign 
Bit Exponent Fraction

+/- 1.XXX * 2YYYY

sign bit
fraction


(AKA mantissa)
exponent

Why this order?



Question

Standard says: Sign 
Bit Exponent Fraction

+/- 1.XXX * 2YYYY

sign bit
fraction


(AKA mantissa)
exponent

Why this order?

(Usually) preserves order even if compared as a two's 
complement integer



Sign Bit
0 = positive; 1 = negative

Question: What about 0?



Sign Bit
0 = positive; 1 = negative

Question: What about 0?

Both positive and negative zero (quirk).



Fraction Value
Recall: each bit for integers represents a power of two:

1 0 0 1

1 * 2^3 0 * 2^2 0 * 2^1 1 * 2^0

8 0 0 1

Same idea for fractional part, but with negative exponents:

0 1 1 0
0 * 2^-1 1 * 2^-2 1 * 2^-3 1 * 2^-4

0 0.25 0.125 0

= 9

= 0.375

1001

XXXX.0110



Exponent Value

• Always written as an unsigned number, even 
for negative exponents

• Uses a biased representation: the actual 
exponent is always (written exponent - 127)


• If written exponent is 120, the actual 
exponent is (120 - 127) = -7



Putting it All Together

• Sign: 0 (positive)


• Exponent: 4 + 8 + 16 + 32 + 64 = 124; 124 - 127 = -3


• Fraction: 0 * 2-1 + 1 * 2-2 = 0.25


• Overall magnitude: (1 + 0.25) * 2-3 = 0.15625

+/- 1.XXX * 2YYYY
The 1 is implicit in the encoding



Decimal Floating-point 
to Binary Floating-point



Floating-point 
Conversion

• Basic idea: determine the correct sign bit, 
exponent, and fractional part to use, and 
stitch them together


• Eight-step algorithm for this


• Running example: -9.5625



Step 1: Determine Sign 
Bit

• -9.5625 is negative


• Sign bit is 1 for negative values



Step 2: Convert Integral 
Part to Unsigned Binary

• -9.5625's integral portion is 9


• 9 = 1001


• No need to add padding or anything else 
(yet)



Step 3: Convert 
Fractional Part to Binary

• -9.5625's fractional portion is 0.5625


• Determine which negative powers of two 
(2-1, 2-2, 2-3, ...) will sum up to this number, 
or at least as closely as possible to this 
number


• Pseudocode algorithm on next side can be 
used for this



fraction = 0.5625

num_iterations = 0

bits = ""

while fraction != 0 and

      num_iterations < 23:

  fraction *= 2

  num_iterations++

  if fraction >= 1.0:

    bits += "1"

    fraction -= 1.0

  else:

    bits += "0"



Step 3: Algorithm with 
Example

0.5625

Iteration Calculation >= 1.0? Output Bit

1 0.5625 * 2 = 
1.125 yes 1

2 0.125 * 2 = 0.25 no 0

3 0.25 * 2 = 0.5 no 0

4 0.5 * 2 = 1.0 yes 1



Step 4: Normalize Value

• Recall: the encoding assumes numbers are 
always in the format +/- 1.XXX * 2YYYY


• We need to put the number in this form


• Integral part (step 2): 1001


• Fractional part (step 3): 1001


• Number overall: integral.fractional: 1001.1001



Step 4: Normalize Value

• To get 1001.1001 into the expected 1.XXX 
* 2YYYY format, we need to move the dot to 
the left 3 positions


• Moves to the left denote positive 
exponents, moves to the right are negative


• Overall: exponent: 3



Step 5: Add Bias to 
Exponent

• Exponent (from step 4): 3


• Recall: exponents are stored in biased form, 
and we will always subtract 127 from this 
value later

• ...so here, we always add 127: 3 + 127 = 130



Step 6: Convert Biased 
Exponent to Binary

• Biased exponent (step 5): 130


• 130 in binary: 1000 0010



Step 7: Determine Final 
Mantissa Bits

• Needed: exactly 23 mantissa bits


• From step 4, we initially had 1001.1001, 
then moved the dot to the left to get 
1.0011001


• First bits of mantissa here will thus be 
0011001



Step 7: Remaining 
Mantissa Bits

• Initial bits: 0011001


• If algorithm in step 3 terminated with 1.0, the number 
is getting represented exactly, with no precision loss.  
Pad zeros on right until 23 bits.


• May need additional algorithm iterations if some 
precision loss happened


• Depending on how exponent moved, some bits on the 
right may also need to be removed (precision loss)



Step 7: Remaining 
Mantissa Bits

• Initial bits: 0011001


• Algorithm terminated exactly, so we can 
pad with zeros.  Final mantissa:


• 0011 0010 0000 0000 0000 000



Step 8: Combine 
Everything

• Sign bit (step 1): 1


• Exponent bits (step 6): 1000 0010


• Mantissa bits (step 7):  0011 0010 0000 
0000 0000 000


• Overall: 1 1000 0010 0011 0010 0000 0000 
0000 000 (copy/pasting all components)


• Or: 1100 0001 0001 1001 0000 0000 
0000 0000 (spaces every nibble)



Further Examples / 
Explanation

• There is also a link named "Instructions for 
Converting Between Decimal and Binary 
Floating-Point Numbers" linked off of the 
course website


• Covers the same thing, but says it a 
little differently, and has additional 
examples and links


