
COMP 122/L Practice Exam #2 (Answers)

This is representative of the kinds of topics and kind of questions you may be asked on the
midterm. In addition to this practice exam, you should also review labs 4-5.

1.) Convert the following C-like code into MIPS assembly. The names of the variables reflect
which registers must be used for the MIPS assembly. Do not assume any initial values for the
registers. You may use additional registers.

$t0 = 3;
$t1 = 7;
$t2 = ($t0 * $t1) + 8;

li $t0, 3
li $t1, 7
mult $t0, $t1
mflo $t2
addiu $t2, $t2, 8

2.) Convert the following C-like code into MIPS assembly. The names of the variables reflect
which registers must be used for the MIPS assembly. Do not assume any initial values for the
registers. You may use additional registers.

if ($t0 == 0) {
 $t1 = 5;
}

 bne $t0, $zero, after_if
 li $t1, 5
after_if:

3.) Convert the following C-like code into MIPS assembly. The names of the variables reflect
which registers must be used for the MIPS assembly. Do not assume any initial values for the
registers. You may use additional registers.

if ($t0 < 5) {
 $t1 = 0;
} else {
 $t1 = 1;
}

 slti $t3, $t0, 5
 beq $t3, $zero, else_branch
 li $t1, 0
 j after_if
else_branch:
 li $t1, 1
after_if:

4.) Convert the following C-like code into MIPS assembly. The names of the variables reflect
which registers must be used for the MIPS assembly. Do not assume any initial values for the
registers. You may use additional registers.

if ($t0 == 0 || $t1 == 1) {
 $t2 = 5;
} else {
 $t2 = 6;
}

 beq $t0, $zero, true_branch
 li $t3, 1
 beq $t1, $t3, true_branch
 li $t2, 6
 j after_if
true_branch:
 li $t2, 5
after_if:

5.) Convert the following C-like code into MIPS assembly. The names of the variables reflect
which registers must be used for the MIPS assembly. Do not assume any initial values for the
registers. You may use additional registers.

if ($t0 >= 0 && $t0 < $t1) {
 $t2 = 9;
} else {
 $t2 = 0;
}

 # !($t0 >= 0 && $t0 < $t1) ==> $t0 < 0 || $t0 >= $t1
 slt $t3, $t0, $zero # $t0 < 0?
 bne $t3, $zero, else_branch # if yes, jump to else
 # $t0 >= $t1 ==> !($t0 < $t1)
 slt $t3, $t0, $t1 # $t0 < $t1?
 beq $t3, $zero, else_branch # if not, jump to else
 li $t2, 9
 j after_if
else_branch:
 li $t2, 0
after_if:

6.) Write a MIPS program that will read integers from the user until 0 is input. Once 0 is input,
the program should print the sum of all the numbers read in. As a hint, you should track a
running sum, instead of trying to store all the numbers the user read in. If the user immediately
inputs a 0, then the running sum should be 0.

 .text
main:
 # $t0: running sum
 # $t1: input number
 li $t0, 0

 # $t1 = readNum()
 # while ($t1 != 0) {
 # $t0 = $t0 + $t1
 # $t1 = readNum()
 # }
 # print($t0)

 li $v0, 5
 syscall
 move $t1, $v0
loop_begin:
 beq $t1, $zero, loop_end
 add $t0, $t0, $t1
 li $v0, 5
 syscall
 move $t1, $v0
 j loop_begin
loop_end:
 move $a0, $t0
 li $v0, 1
 syscall

 li $v0, 10
 syscall

7.) Convert the following C-like code into MIPS assembly. The names of the variables reflect
which registers must be used for the MIPS assembly. Do not assume any initial values for the
registers. You may use additional registers.

$t0 = 10
$t1 = 1
$t2 = 0
while ($t1 <= $t0) {
 $t2 = $t2 + $t1;
 $t1++;
}

 .text
main:
 li $t0, 10
 li $t1, 1
 li $t2, 0
loop_begin:
 # $t1 <= $t0 ==> !($t1 > $t0) ==> !($t0 < $t1)
 slt $t3, $t0, $t1
 # $t3 == 0 if $t0 < $t1, meaning !($t1 > $t0), meaning $t1 <=
$t0
 # $t3 == 1 if !($t1<= $t0)
 bne $t3, $zero, loop_end
 add $t2, $t2, $t1
 addi $t1, $t1, 1
 j loop_begin
loop_end:
 li $v0, 10
 syscall

8.) Write a MIPS program that will read in an integer, and will print one of two things:

• Bit 2 is set

• Bit 2 is not set

...depending on whether or not bit 2 of the input number is set. To be clear, bit 0 refers to the
rightmost bit in the number.

 .data
is_set_string:
 .asciiz "Bit 2 is set\n"
is_not_set_string:
 .asciiz "Bit 2 is not set\n"

 .text
main:
 # $t0: the number

 # read in the integer
 li $v0, 5
 syscall
 move $t0, $v0

 # mask out all other bits
 andi $t0, $t0, 0x4

 beq $t0, $zero, is_not_set
 la $a0, is_set_string
 j after_if
is_not_set:
 la $a0, is_not_set_string
after_if:
 # print the string
 li $v0, 4
 syscall

 # exit the program
 li $v0, 10
 syscall

9.) Convert the following C-like code into MIPS assembly. The names of the variables reflect
which registers must be used for the MIPS assembly. Do not assume any initial values for the
registers. You may use additional registers.

int s0 = 82;
int s1 = s0 << 2;
int s2 = s1 * 20;
int s3 = s2 + 7;
int s4 = s3 - 24;
int s5 = s4 / 3;

main:
 li $s0, 82 # int s0 = 82;

 sll $s1, $s0, 2 # int s1 = s0 << 2;

 li $t0, 20 # int s2 = s1 * 20 (part 1 of 3)
 mult $s1, $t0 # (part 2 of 3)
 mflo $s2 # (part 3 of 3)

 addi $s3, $s2, 7 # int s3 = s2 + 7

 li $t1, 24 # int s4 = s3 - 24 (part 1 of 2)
 sub $s4, $s3, $t1 # (part 2 of 2)

 li $t2, 3 # int s5 = s4 / 3 (part 1 of 3)
 div $s4, $t2 # (part 2 of 3)
 mflo $s5 # (part 3 of 3)

10.) Convert the following C-like code into MIPS assembly. The names of the variables reflect
which registers must be used for the MIPS assembly. Do not assume any initial values for the
registers. You may use additional registers. The portions in <<>> will require you to use
QtSpim functionality. You do not need to exit the program properly.

int s0 = <<read integer from the user>>;
int s1 = 2;
if (s0 < 7) {
 s1 = 3;
}
<<print integer s1>>

main:
 # read integer from user
 li $v0, 5
 syscall

 # save integer from user
 move $s0, $v0

 # store 2 in s1
 li $s1, 2

 # check if s0 < 7
 li $t0, 7
 slt $t1, $s0, $t0

 # if it's NOT less than 7, skip the body of the if
 beq $t1, $zero, printmsg

 # we didn't branch, meaning s0 < 7
 li $s1, 3

printmsg:
 # print s1
 li $v0, 1
 move $a0, $s1
 syscall

11.) Convert the following C-like code into MIPS assembly. The names of the variables reflect
which registers must be used for the MIPS assembly. Do not assume any initial values for the
registers. You may use additional registers. The portions in <<>> will require you to use
QtSpim functionality. You do not need to exit the program properly.

int s0 = <<read integer from the user>>;
int s1 = 2;
if (s0 < 7) {
 s1 = 3;
} else {
 s1 = s0 + s0;
}
<<print integer s1>>

main:
 # read in the integer from the user, and initialize s1
 li $v0, 5
 syscall
 move $s0, $v0
 li $s1, 2

 # check if $s0 < 7
 li $t0, 7
 slt $t1, $s0, $t0

 # jump to the else branch if this isn't true
 beq $t1, $zero, else_branch

 # fall through to the true branch
 li $s1, 3
 j print

else_branch:
 add $s1, $s0, $s0
 # fall through to the print

print:
 li $v0, 1
 move $a0, $s0
 syscall

12.) Convert the following C-like code into MIPS assembly. The names of the variables reflect
which registers must be used for the MIPS assembly. Do not assume any initial values for the
registers. You may use additional registers. The portions in <<>> will require you to use
QtSpim functionality. You do not need to exit the program properly.

int s0;
int s1 = 1;
for (s0 = 0; s0 < 10; s0++) {
 s1 = s1 * s0;
}

main:
 # initialize variables
 li $s0, 0
 li $s1, 2
loop:
 # check loop condition
 li $t0, 10
 slt $t1, $s0, $t0 # s0 < 10?
 beq $t1, $zero, loop_exit # if not, jump to loop_exit

 # do body of the loop
 mult $s1, $s0
 mflo $s1

 # increment counter
 addi $s0, $s0, 1
 j loop

loop_exit:
 # this is past the loop

