
COMP 122/L Practice Exam #2 (Answers)

This is representative of the kinds of topics and kind of questions you may be asked on the
midterm. In addition to this practice exam, you should also review labs 4-5.

1.) Convert the following C-like code into MIPS assembly. The names of the variables reflect
which registers must be used for the MIPS assembly. Do not assume any initial values for the
registers. You may use additional registers.

$t0 = 3;

$t1 = 7;

$t2 = ($t0 * $t1) + 8;

li $t0, 3

li $t1, 7

mult $t0, $t1

mflo $t2

addiu $t2, $t2, 8

2.) Convert the following C-like code into MIPS assembly. The names of the variables reflect
which registers must be used for the MIPS assembly. Do not assume any initial values for the
registers. You may use additional registers.

if ($t0 == 0) {

 $t1 = 5;

}

 bne $t0, $zero, after_if

 li $t1, 5

after_if:

3.) Convert the following C-like code into MIPS assembly. The names of the variables reflect
which registers must be used for the MIPS assembly. Do not assume any initial values for the
registers. You may use additional registers.

if ($t0 < 5) {

 $t1 = 0;

} else {

 $t1 = 1;

}

 slti $t3, $t0, 5

 beq $t3, $zero, else_branch

 li $t1, 0

 j after_if

else_branch:

 li $t1, 1

after_if:

4.) Convert the following C-like code into MIPS assembly. The names of the variables reflect
which registers must be used for the MIPS assembly. Do not assume any initial values for the
registers. You may use additional registers.

if ($t0 == 0 || $t1 == 1) {

 $t2 = 5;

} else {

 $t2 = 6;

}

 beq $t0, $zero, true_branch

 li $t3, 1

 beq $t1, $t3, true_branch

 li $t2, 6

 j after_if

true_branch:

 li $t2, 5

after_if:

5.) Convert the following C-like code into MIPS assembly. The names of the variables reflect
which registers must be used for the MIPS assembly. Do not assume any initial values for the
registers. You may use additional registers.

if ($t0 >= 0 && $t0 < $t1) {

 $t2 = 9;

} else {

 $t2 = 0;

}

 # !($t0 >= 0 && $t0 < $t1) ==> $t0 < 0 || $t0 >= $t1

 slt $t3, $t0, $zero # $t0 < 0?

 bne $t3, $zero, else_branch # if yes, jump to else

 # $t0 >= $t1 ==> !($t0 < $t1)

 slt $t3, $t0, $t1 # $t0 < $t1?

 beq $t3, $zero, else_branch # if not, jump to else

 li $t2, 9

 j after_if

else_branch:

 li $t2, 0

after_if:

6.) Write a MIPS program that will read integers from the user until 0 is input. Once 0 is input,
the program should print the sum of all the numbers read in. As a hint, you should track a
running sum, instead of trying to store all the numbers the user read in. If the user immediately
inputs a 0, then the running sum should be 0.

 .text

main:

 # $t0: running sum

 # $t1: input number

 li $t0, 0

 # $t1 = readNum()

 # while ($t1 != 0) {

 # $t0 = $t0 + $t1

 # $t1 = readNum()

 # }

 # print($t0)

 li $v0, 5

 syscall

 move $t1, $v0

loop_begin:

 beq $t1, $zero, loop_end

 add $t0, $t0, $t1

 li $v0, 5

 syscall

 move $t1, $v0

 j loop_begin

loop_end:

 move $a0, $t0

 li $v0, 1

 syscall

 li $v0, 10

 syscall

7.) Convert the following C-like code into MIPS assembly. The names of the variables reflect
which registers must be used for the MIPS assembly. Do not assume any initial values for the
registers. You may use additional registers.

$t0 = 10

$t1 = 1

$t2 = 0

while ($t1 <= $t0) {

 $t2 = $t2 + $t1;

 $t1++;

}

 .text

main:

 li $t0, 10

 li $t1, 1

 li $t2, 0

loop_begin:

 # $t1 <= $t0 ==> !($t1 > $t0) ==> !($t0 < $t1)

 slt $t3, $t0, $t1

 # $t3 == 0 if $t0 < $t1, meaning !($t1 > $t0), meaning $t1 <=
$t0

 # $t3 == 1 if !($t1<= $t0)

 bne $t3, $zero, loop_end

 add $t2, $t2, $t1

 addi $t1, $t1, 1

 j loop_begin

loop_end:

 li $v0, 10

 syscall

8.) Write a MIPS program that will read in an integer, and will print one of two things:

• Bit 2 is set

• Bit 2 is not set

...depending on whether or not bit 2 of the input number is set. To be clear, bit 0 refers to the
rightmost bit in the number.

 .data

is_set_string:

 .asciiz "Bit 2 is set\n"

is_not_set_string:

 .asciiz "Bit 2 is not set\n"

 .text

main:

 # $t0: the number

 # read in the integer

 li $v0, 5

 syscall

 move $t0, $v0

 # mask out all other bits

 andi $t0, $t0, 0x4

 beq $t0, $zero, is_not_set

 la $a0, is_set_string

 j after_if

is_not_set:

 la $a0, is_not_set_string

after_if:

 # print the string

 li $v0, 4

 syscall

 # exit the program

 li $v0, 10

 syscall

9.) Convert the following C-like code into MIPS assembly. The names of the variables reflect
which registers must be used for the MIPS assembly. Do not assume any initial values for the
registers. You may use additional registers.

int s0 = 82;

int s1 = s0 << 2;

int s2 = s1 * 20;

int s3 = s2 + 7;

int s4 = s3 - 24;

int s5 = s4 / 3;

main:

 li $s0, 82 # int s0 = 82;

 sll $s1, $s0, 2 # int s1 = s0 << 2;

 li $t0, 20 # int s2 = s1 * 20 (part 1 of 3)

 mult $s1, $t0 # (part 2 of 3)

 mflo $s2 # (part 3 of 3)

 addi $s3, $s2, 7 # int s3 = s2 + 7

 li $t1, 24 # int s4 = s3 - 24 (part 1 of 2)

 sub $s4, $s3, $t1 # (part 2 of 2)

 li $t2, 3 # int s5 = s4 / 3 (part 1 of 3)

 div $s4, $t2 # (part 2 of 3)

 mflo $s5 # (part 3 of 3)

10.) Convert the following C-like code into MIPS assembly. The names of the variables reflect
which registers must be used for the MIPS assembly. Do not assume any initial values for the
registers. You may use additional registers. The portions in <<>> will require you to use
QtSpim functionality. You do not need to exit the program properly.

int s0 = <<read integer from the user>>;

int s1 = 2;

if (s0 < 7) {

 s1 = 3;

}

<<print integer s1>>

main:

 # read integer from user

 li $v0, 5

 syscall

 # save integer from user

 move $s0, $v0

 # store 2 in s1

 li $s1, 2

 # check if s0 < 7

 li $t0, 7

 slt $t1, $s0, $t0

 # if it's NOT less than 7, skip the body of the if

 beq $t1, $zero, printmsg

 # we didn't branch, meaning s0 < 7

 li $s1, 3

printmsg:

 # print s1

 li $v0, 1

 move $a0, $s1

 syscall

11.) Convert the following C-like code into MIPS assembly. The names of the variables reflect
which registers must be used for the MIPS assembly. Do not assume any initial values for the
registers. You may use additional registers. The portions in <<>> will require you to use
QtSpim functionality. You do not need to exit the program properly.

int s0 = <<read integer from the user>>;

int s1 = 2;

if (s0 < 7) {

 s1 = 3;

} else {

 s1 = s0 + s0;

}

<<print integer s1>>

main:

 # read in the integer from the user, and initialize s1

 li $v0, 5

 syscall

 move $s0, $v0

 li $s1, 2

 # check if $s0 < 7

 li $t0, 7

 slt $t1, $s0, $t0

 # jump to the else branch if this isn't true

 beq $t1, $zero, else_branch

 # fall through to the true branch

 li $s1, 3

 j print

else_branch:

 add $s1, $s0, $s0

 # fall through to the print

print:

 li $v0, 1

 move $a0, $s0

 syscall	 	

12.) Convert the following C-like code into MIPS assembly. The names of the variables reflect
which registers must be used for the MIPS assembly. Do not assume any initial values for the
registers. You may use additional registers. The portions in <<>> will require you to use
QtSpim functionality. You do not need to exit the program properly.

int s0;

int s1 = 1;

for (s0 = 0; s0 < 10; s0++) {

 s1 = s1 * s0;

}

main:

 # initialize variables

 li $s0, 0

 li $s1, 2

loop:

 # check loop condition

 li $t0, 10

 slt $t1, $s0, $t0 # s0 < 10?

 beq $t1, $zero, loop_exit # if not, jump to loop_exit

 # do body of the loop

 mult $s1, $s0

 mflo $s1

 # increment counter

 addi $s0, $s0, 1

 j loop

loop_exit:

 # this is past the loop

