COMP I22/L Lecture I

Kyle Dewey

About Me

- My research:
- Automated program testing + CS education
- Programming language design (with JPL)
- Lots of experience with functional and logic programming
- Third time teaching this class, fifth time teaching this content

About this Class

- See something wrong? Want something improved? Email me about it! (kyle.dewey@csun.edu)
- I generally operate based on feedback

Bad Feedback

- This guy sucks.
- This class is boring.
- This material is useless.

Good Feedback

- This guy sucks, I can't read his writing.
- This class is boring, it's way too slow.
- This material is useless, I don't see how it relates to anything in reality.
- I can't fix anything if I don't know what's wrong

What's this Class About?

Class Structure

- Numerical representation (what do we represent numbers on the machine?)
- Numerical operations (how does the processor do numeric operations?)
- Assembly (how do we talk directly to the processor?)
- Circuits (how can we build a processor?)

Class Motivation

public static void
main(String[] args) \{
...
\}
-I just want to write my code

-Image source: http://media.firebox.com/pic/p5294_column_grid_12.jpg -Have some magic happen

-Image source: http://media.firebox.com/pic/p5294_column_grid_12.jpg -And then get a result

-Image source: http://dnr.wi.gov/eek/critter/reptile/images/turtleMidlandPainted.jpg -But what if your magic isn't working fast enough?

-Image source: http://dnr.wi.gov/eek/critter/reptile/images/turtleMidlandPainted.jpg -Let's apply some better algorithms, improve time complexity, and so on...

-Image source: http://turtlefeed.tumblr.com/post/35444735335/ive-lost-track-of-how-many-turtle-on-skateboard -...and we're left with a slightly faster turtle

Why are things still slow?

The magic box isn't so magic

Array Access

```
    arr[x]
```

- Constant time! (O(I))
- Where the random in random access memory comes from!

Array Access

- Constant ti
- Where the

```
    arr[x]
``` memory co


\section*{Array Access}
- Memory is loaded as chunks into caches
- Cache access is much faster (e.g., IOx)
- Iterating through an array is fast
- Jumping around randomly is slow
- Can make code exponentially faster

\section*{Instruction Ordering}

-Two code snippets that appear to do the exact same thing -Both should take the same amount of time, right?

\section*{Instruction Ordering}
\begin{tabular}{|c|c|}
\hline int \(x=a+b ;\) & int \(z=e-f ;\) \\
int \(y=c * d ;\) \\
int \(z=e-f ;\) & int \(y=c * d ;\) \\
int \(x=a+b ;\) \\
3 Milliseconds? & 3 Milliseconds? \\
\hline
\end{tabular}

\section*{Instruction Ordering}

-Image source: http://www.dreamstime.com/stock-photo-nope-word-typed-scrap-torn-paper-pinned-to-cork-notice-board-word-well-known-meme-modern-slang-image43914016

\section*{Instruction Ordering}
- Modern processors are pipelined, and can execute sub-portions of instructions in parallel
- Depends on when instructions are encountered
- Some can execute whole instructions in different orders
- Processors executing x86(_64) are complex

\section*{The Point}
- If you really want performance, you need to know how the magic works
- "But it scales!" - restrictions apply
- Chrome is fast for a reason
- If you want to write a naive compiler, you need to know some low-level details
- If you want to write a fast compiler, you need to know tons of low-level details

\section*{So Why Circuits?}

\section*{So Why Circuits?}

-Image source: https://en.wikipedia.org/wiki/MIPS_instruction_set\#/media/File:MIPS_Architecture_\%28Pipelined\%29.svg -...into this

\section*{So Why Circuits?}
- Basically, circuits are the programming language of hardware
- Everything goes back to physics

\section*{Lecture vs. Lab}
- They're graded as if it's one class (single grade)
- Many days won't be a 35 minute lecture with a 35 minute lab (depends on where we are and what we're doing)
- Sometimes more lecture will be needed, other times more lab is needed

\section*{Syllabus}

Working with Different Bases

\section*{Base-I0 (Decimal)}
- Our number system is base- 10 ; we have 10 possible digits for each position in a number: \(0, \mathrm{I}, 2,3,4,5,6,7,8,9\)
- I92, 9034, 42, II8, ...
- Why?

\section*{Base-2 (Binary)}
- Only two digits: 0,1
- OIO, IIOI, IIIOOIOI,...
- Extremely popular in computing - why?

\section*{Why Care?}
- Processors natively "speak" binary
- If you want to speak directly to the processor, you have to speak it's language (to some degree)

\section*{What's In a Number?}
- Question: why exactly does 123 have the value I23? As in, what does it mean?

\section*{What's In a Number?}

123

\section*{What's In a Number?}
\begin{tabular}{|l|l|l|}
\hline 1 & 2 & 3 \\
\\
\hline
\end{tabular}

\section*{What's In a Number?}
\begin{tabular}{|c|c|c|}
\hline 1 & 2 & 3 \\
Hundreds & Tens & Ones \\
\hline
\end{tabular}

\section*{What's In a Number?}
\begin{tabular}{|c|c|cc|}
\hline 1 & 2 & 3 \\
Hundreds & \multicolumn{2}{|c|}{ Tens } & Ones \\
100 & 10 & 10 & 1 \\
\hline
\end{tabular}

\section*{Question}
- Why did we go to tens? Hundreds?
\begin{tabular}{|c|c|c|c|c|c|}
\hline I & \multicolumn{2}{|c|}{2} & & \multicolumn{2}{|l|}{3} \\
\hline Hundreds & \multicolumn{2}{|c|}{Tens} & \multicolumn{3}{|c|}{Ones} \\
\hline 100 & 10 & 10 & I & I & I \\
\hline
\end{tabular}

\section*{Answer}
- Because we are in decimal (base 10)
\begin{tabular}{|c|c|c|c|c|c|}
\hline I & \multicolumn{2}{|c|}{2} & & \multicolumn{2}{|l|}{3} \\
\hline Hundreds & \multicolumn{2}{|c|}{Tens} & \multicolumn{3}{|c|}{Ones} \\
\hline 100 & 10 & 10 & I & 1 & 1 \\
\hline
\end{tabular}

\section*{Another View}

\section*{Another View}
\begin{tabular}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline & \\
\hline
\end{tabular}

\section*{Another View}
\begin{tabular}{|c|c|c|}
\hline 1 & 2 & 3 \\
\(1 \times 10^{2}\) & \(2 \times 101\) & \(3 \times 100\) \\
\hline
\end{tabular}

\section*{Conversion from Some Base to Decimal}
- Involves repeated division by the value of the base
- From right to left: list the remainders
- Continue until 0 is reached
- Final value is result of reading remainders from bottom to top
- For example: what is 231 decimal to decimal?

\title{
Conversion from Some Base to Decimal
}

\section*{Conversion from Some} Base to Decimal

\section*{Conversion from Some} Base to Decimal
\begin{tabular}{c|l}
\(10 \underline{231}\) & Remainder \\
\(10 \underline{23}\) & 1 \\
2 & \\
&
\end{tabular}

\section*{Conversion from Some Base to Decimal}
\begin{tabular}{c|c}
\(10 \underline{231}\) & Remainder \\
\(10 \underline{23}\) & 1 \\
\(10 \underline{2}\) & 3 \\
0 & 2
\end{tabular}

\section*{Now for Binary}
- Binary is base 2
- Useful because circuits are either on or off, representable as two states, 0 and I

Now for Binary

1010

Now for Binary

\section*{Now for Binary}
\begin{tabular}{|c|c|c|c|}
\hline 1 & 0 & 1 & 0 \\
Eights & Fours & Twos & Ones \\
\hline
\end{tabular}

\section*{Now for Binary}
\begin{tabular}{|c|c|c|c|}
\hline 1 & 0 & 1 & 0 \\
Eights & Fours & Twos & Ones \\
\(1 \times 2^{3}\) & \(0 \times 2^{2}\) & \(1 \times 2^{1}\) & \(0 \times 2^{0}\) \\
8 & 0 & 2 & 0 \\
\hline
\end{tabular}

\section*{Question}
- What is binary OlOl as a decimal number?

\section*{Answer}
- What is binary 0101 as a decimal number?
- 5
\begin{tabular}{c|c|c|c|}
\hline 0 & 1 & 0 & 1 \\
Eights & Fours & Twos & Ones \\
\(0 \times 2^{3}\) & \(1 \times 2^{2}\) & \(0 \times 2^{1}\) & \(1 \times 2^{0}\) \\
0 & 4 & 0 & 1 \\
\hline
\end{tabular}

\section*{From Decimal to Binary}
- What is decimal 57 to binary?

From Decimal to Binary

57

\section*{From Decimal to Binary}

\section*{From Decimal to Binary}

\section*{From Decimal to Binary}
\begin{tabular}{r|l|l}
\(2 \underline{57}\) & Remainder \\
\(2 \underline{28}\) & 1 \\
\(2 \frac{14}{7}\) & 0 \\
& & \\
&
\end{tabular}

\section*{From Decimal to Binary}
\begin{tabular}{r|r|l}
2 & \(\underline{57}\) & Remainder \\
2 & \\
\(2 \underline{28}\) \\
\(2 \underline{14}\) & 1 \\
\(2 \frac{7}{3}\) & 0 \\
& & 1
\end{tabular}

\section*{From Decimal to Binary}
\begin{tabular}{|c|c|}
\hline & Remainder \\
\hline \(2 \mid 57\) & \\
\hline \(2 \underline{28}\) & I \\
\hline \(2 \| 4\) & 0 \\
\hline 27 & 0 \\
\hline \(2 \mid 3\) & 1 \\
\hline I & I \\
\hline
\end{tabular}

\section*{From Decimal to Binary}
\begin{tabular}{|c|c|}
\hline & Remainder \\
\hline 2 257 & \\
\hline \(2 \underline{128}\) & 1 \\
\hline \(2 \| 4\) & 0 \\
\hline 27 & 0 \\
\hline 213 & 1 \\
\hline \(2 \|\) & 1 \\
\hline 0 & I \\
\hline
\end{tabular}

\section*{Hexadecimal}
- Base 16
- Binary is horribly inconvenient to write out
- Easier to convert between hexadecimal (which is more convenient) and binary
- Each hexadecimal digit maps to four binary digits
- Can just memorize a table

\section*{Hexadecimal}
- Digits 0-9, along with A (I0), B (II), C (I2), D (I3), E (I4), F (I5)

\section*{Hexadecimal Example}
- What is IAF hexadecimal in decimal?

\section*{Hexadecimal Example}
\begin{tabular}{|l|l|l|}
\hline I & A & F \\
\\
& \\
\hline
\end{tabular}

\section*{Hexadecimal Example}
\begin{tabular}{|c|c|c|}
\hline I & A & F \\
Two-fifty-sixes & Sixteens & Ones \\
\hline
\end{tabular}

\section*{Hexadecimal Example}
\begin{tabular}{c|c|c|}
\hline I & A & F \\
Two-fifty-sixes & Sixteens & Ones \\
\(1 \times 16^{2}\) & \(10 \times 161\) & \(15 \times 16^{0}\) \\
& & \\
\hline
\end{tabular}

\section*{Hexadecimal Example}
\begin{tabular}{|c|c|c|}
\hline I & A & F \\
\hline Two-fifty-sixes & Sixteens & Ones \\
\hline \(1 \times 16{ }^{2}\) & \(10 \times 161\) & \(15 \times 16^{0}\) \\
\hline & 1616161616 & 11111 \\
\hline & \(\begin{array}{lllll}16 & 16 \quad 16 \quad 16\end{array}\) & I I I I \\
\hline 256 & (I60) & \[
1 \underset{(15)}{l|l|}
\] \\
\hline
\end{tabular}

\section*{Hexadecimal to Binary}
- Previous techniques all work, using decimal as an intermediate
- The faster way: memorize a table (which can be easily reconstructed)

\section*{Hexadecimal to Binary}
\begin{tabular}{|c|c|}
\hline Hexadecimal & Binary \\
\hline 0 & 0000 \\
\hline 1 & 0001 \\
\hline 2 & 0010 \\
\hline 3 & 0011 \\
\hline 4 & 0100 \\
\hline 5 & 0101 \\
\hline 6 & 0110 \\
\hline 7 & 0111 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Hexadecimal & Binary \\
\hline 8 & 1000 \\
\hline 9 & 1001 \\
\hline\(A(10)\) & 1010 \\
\hline\(B(11)\) & 1011 \\
\hline\(C(12)\) & 1100 \\
\hline\(D(13)\) & 1101 \\
\hline\(E(14)\) & 1110 \\
\hline\(F(15)\) & 1111 \\
\hline
\end{tabular}```

