COMP I22/L Lecture 2

Kyle Dewey

Outline

- Operations on binary values
- AND, OR, XOR, NOT
- Bit shifting (left, two forms of right)
- Addition
- Subtraction
- Twos complement

Bitwise Operations

Bitwise AND

- Similar to logical AND (\& \&) , except it works on a bit-by-bit manner
- Denoted by a single ampersand: \&
(1001 \&

101) =

0001

Bitwise OR

- Similar to logical OR (||), except it works on a bit-by-bit manner
- Denoted by a single pipe character:|

```
(1001 |
\(0101)=\)
1101
```


Bitwise XOR

- Exclusive OR, denoted by a carat: ^
- Similar to bitwise OR, except that if both inputs are 1 then the result is 0
$(1001$ ~

101) =

1100

Bitwise NOT

- Similar to logical NOT (!), except it works on a bit-by-bit manner
- Denoted by a tilde character: ~
~1001 =
0110

Shift Left

- Move all the bits N positions to the left, subbing in N 0 s on the right

Shift Left

- Move all the bits N positions to the left, subbing in N 0 s on the right

Shift Left

- Move all the bits N positions to the left, subbing in N 0 s on the right

$$
\begin{aligned}
& 1001 \ll 2= \\
& 100100
\end{aligned}
$$

Shift Left

- Useful as a restricted form of multiplication
- Question: how?

$$
\begin{aligned}
& 1001 \ll 2= \\
& 100100
\end{aligned}
$$

Shift Left as Multiplication

- Equivalent decimal operation:

Shift Left as Multiplication

- Equivalent decimal operation:

```
234 << 1 =
2340
```


Shift Left as Multiplication

- Equivalent decimal operation:

```
234<< 1 =
2340
234<< 2 =
23400
```


Multiplication

- Shifting left N positions multiplies by (base) ${ }^{\mathrm{N}}$
- Multiplying by 2 or 4 is often necessary (shift left I or 2 positions, respectively)
- Often a whooole lot faster than telling the processor to multiply
- Compilers try hard to do this

$$
\begin{aligned}
& 234 \ll 2= \\
& 23400
\end{aligned}
$$

Shift Right

- Move all the bits N positions to the right, subbing in either N 0 s or N 1 s on the left
- Two different forms

Shift Right

- Move all the bits N positions to the right, subbing in either N 0 s or N (whatever the leftmost bit is)s on the left
- Two different forms
$1001 \gg 2=$
either 0010 or 1110

Shift Right Trick

- Question: If shifting left multiplies, what does shift right do?

Shift Right Trick

- Question: If shifting left multiplies, what does shift right do?
- Answer: divides in a similar way, but truncates result

Shift Right Trick

- Question: If shifting left multiplies, what does shift right do?
- Answer: divides in a similar way, but truncates result

Shift Right Trick

- Question: If shifting left multiplies, what does shift right do?
- Answer: divides in a similar way, but truncates result

234 >> $1=$
23

Two Forms of Shift Right

- Subbing in 0s makes sense
- What about subbing in the leftmost bit?
- And why is this called "arithmetic" shift right?

1100 (arithmetic) >> $1=$ 1110

Answer...Sort of

- Arithmetic form is intended for numbers in twos complement, whereas the nonarithmetic form is intended for unsigned numbers

Twos Complement

Problem

- Binary representation so far makes it easy to represent positive numbers and zero
- Question:What about representing negative numbers?

Twos Complement

- Way to represent positive integers, negative integers, and zero
- If 1 is in the most significant bit (generally leftmost bit in this class), then it is negative

Decimal to Twos Complement

- Example: -5 decimal to binary (twos complement)

Decimal to Twos Complement

- Example: -5 decimal to binary (twos complement)
- First, convert the magnitude to an unsigned representation

Decimal to Twos Complement

- Example: -5 decimal to binary (twos complement)
- First, convert the magnitude to an unsigned representation

$$
5 \text { (decimal) = } 0101 \text { (binary) }
$$

Decimal to Twos
 Complement

- Then, take the bits, and negate them

Decimal to Twos
 Complement

- Then, take the bits, and negate them

0101

Decimal to Twos
 Complement

- Then, take the bits, and negate them
~0101 =
1010

Decimal to Twos
 Complement

- Finally, add one:

Decimal to Twos
 Complement

- Finally, add one:

1010

Decimal to Twos
 Complement

- Finally, add one:
$1010+1=$
1011

Twos Complement to Decimal

- Same operation: negate the bits, and add one

Twos Complement to Decimal

- Same operation: negate the bits, and add one

1011

Twos Complement to Decimal

- Same operation: negate the bits, and add one

$$
\begin{array}{r}
\sim 1011= \\
0100
\end{array}
$$

Twos Complement to Decimal

- Same operation: negate the bits, and add one

Twos Complement to Decimal

- Same operation: negate the bits, and add one
$0100+1=$ 0101

Twos Complement to Decimal

- Same operation: negate the bits, and add one
$0100+1=$
$0101=$
We started with
1011 - negative

Intuition

- Modular arithmetic, with the convention that a leading 1 bit means negative

-This is the intuition from Wikipedia, which makes a whole lot more sense

Intuition

- Modular arithmetic, with the convention that a leading 1 bit means negative

-This is the intuition from Wikipedia, which makes a whole lot more sense
-There is still a lot of detail missing here - it's not necessary to understand in order to work with this. There is actually quite a bit of mathematics behind why this works

Intuition

- Modular arithmetic, with the convention that a leading 1 bit means negative

-This is the intuition from Wikipedia, which makes a whole lot more sense
-There is still a lot of detail missing here - it's not necessary to understand in order to work with this. There is actually quite a bit of mathematics behind why this works

Negation of 1

Negation of 1

Negation of 1

Negation of 1

-Add 1
-This is exactly what we expected - binary 111 represents decimal -1

Consequences

-What is the negation of 000 ?

-Technically, adding one resulted in 1000, but that got cut off

Consequences

-What is the negation of 100 ?

-Negate all bits: 100 -> 011
-Add one: 100
-Uh oh...this states that the negation of -4 is -4.
-Underlying problem is that we don't have a representation for 4 with just three bits

Arithmetic Shift Right

- Not exactly division by a power of two
- Consider -3 / 2

Addition

Building Up Addition

- Question: how might we add the following, in decimal?

$$
\begin{array}{r}
986 \\
+123 \\
---- \\
?
\end{array}
$$

Building Up Addition

- Question: how might we add the following, in decimal?

$$
\begin{array}{r}
986 \\
+123 \\
---- \\
?
\end{array}
$$

Building Up Addition

- Question: how might we add the following, in decimal?

$$
\begin{array}{r}
986 \\
+123 \\
---- \\
?
\end{array}
$$

Building Up Addition

- Question: how might we add the following, in decimal?

$$
\begin{array}{r}
986 \\
+123 \\
---- \\
?
\end{array}
$$

	Carry: 1	8	6
		+2	+3
		--	--
			9

Building Up Addition

- Question: how might we add the following, in decimal?

Building Up Addition

- Question: how might we add the following, in decimal?

$\begin{array}{r} 986 \\ +123 \end{array}$			
?			
Carry: 1	1	8	6
	9	+2	+3
	+1	--	-
	--	0	9
	1		

Building Up Addition

- Question: how might we add the following, in decimal?

986 +123 ---- $?$			
	1	8	6
1	9	+2	+3
+0	+1	--	--
--	--	0	9
1	1		

Core Concepts

- We have a "primitive" notion of adding single digits, along with an idea of carrying digits
- We can build on this notion to add numbers together that are more than one digit long

Now in Binary

- Arguably simpler - fewer one-bit possibilities

0	0	1	1
+0	+1	+0	+1
--	--	--	--
$?$	$?$	$?$	$?$

Now in Binary

- Arguably simpler - fewer one-bit possibilities

0	0	1	1
+0	+1	+0	+1
--	--	--	--
0	1	1	0
			Carry: 1

Chaining the Carry

- Also need to account for any input carry

0	0		0	
0	0		1	0
+0	+1		+0	
--	-		-1	
0	1		1	
1	1		1	
0	0		1	
+0	+1		+0	
-	--		--	1
1	0	Carry: 1	0	Carry: 1

Adding Multiple Bits

- How might we add the numbers below?

011
+0 01

Adding Multiple Bits

- How might we add the numbers below?

Adding Multiple Bits

- How might we add the numbers below?

$$
\begin{array}{r}
10 \\
011 \\
+001
\end{array}
$$

Adding Multiple Bits

- How might we add the numbers below?

$$
\begin{array}{r}
110 \\
011 \\
+001 \\
--00
\end{array}
$$

Adding Multiple Bits

- How might we add the numbers below?

Adding Multiple Bits

- How might we add the numbers below?

Another Example

Another Example
0
111
+001
$+-\quad-\quad-\quad 1$

Another Example

Another Example

Another Example

Output Carry Bit Significance

- For unsigned numbers, it indicates if the result did not fit all the way into the number of bits allotted
- May be an error condition for software

Signed Addition

- Question: what is the result of the following operation?

Signed Addition

- Question: what is the result of the following operation?
+011

0110
-If these are treated as signed numbers in two's complement, then we need a leading 0 to indicate that this is a positive number -Truncated to three bits, the result is a negative number!

Overflow

- In this situation, overflow occurred: this means that both the operands had the same sign, and the result's sign differed

011
+011

110

- Possibly a software error

Overflow vs. Carry

- These are different ideas
- Carry is relevant to unsigned values
- Overflow is relevant to signed values

111	011	111	001
+001	+011	+100	+001
----	----	----	----
000	110	011	010
No Overflow;	Overflow;	Overflow;	No Overflow;
Carry	No Carry	Carry	No Carry

[^0]
Subtraction

Subtraction

- Have been saying to invert bits and add one to second operand
- Could do it this way in hardware, but there is a trick

Subtraction Trick

- Assume we can cheaply invert bits, but we want to avoid adding twice (once to add I and once to add the other result)
- How can we do this easily?

Subtraction Trick

- Assume we can cheaply invert bits, but we want to avoid adding twice (once to add I and once to add the other result)
- How can we do this easily?
- Set the initial carry to 1 instead of 0

Subtraction Example

Subtraction Example

-0011

Subtraction Example

-0 01

Subtraction Example

0101
-0011 $\xrightarrow{\text { Invert } 0011} 1100 \xrightarrow{\text { Equivalent to }}$

Subtraction Example

Subtraction Example

[^0]: -As to when is it a problem, this all depends on exactly what it is you're doing

