COMP I22/L Lecture 3

Kyle Dewey

Outline

- Floating point numbers

Question

How might we represent floating point numbers?
1.25
47.9
0.82
-A lot of different ways possible
-A whole lot of problems related to precision arise. Just about any representation devisable will be complex.

Enter IEEE-754

- Standardized floating point representation and operations
- Modern systems all use this
- Complex and weird

Enter IEEE-754

- Standardized floating point representation and operations
- Modern systems all use this
- Complex and weird

$$
\min (X, Y)=? \min (Y, X)
$$

Enter IEEE-754

- Standardized floating point representation and operations
- Modern systems all use this
- Complex and weird
$\min (X, Y)=? \min (Y, X)$
May or may not be true...
-Standard doesn't enforce that this is true in general. Implementations are permitted to make it so this isn't true in all cases.

Basis

Based on the idea of scientific notation

Basis

Based on the idea of scientific notation $4.23 * 10^{7} \quad-8.7 * 10^{2} \quad 14.6 * 10-5 \quad-9.4 * 10-18$

Basis

Based on the idea of scientific notation $4.23 * 10^{7} \quad-8.7 * 10^{2} \quad 14.6 * 10-5 \quad-9.4 * 10-18$

Caveat: use powers of two

$$
1.1 * 2^{-1}
$$

Basis

Based on the idea of scientific notation
$4.23 * 10^{7} \quad-8.7 * 10^{2} \quad 14.6 * 10-5 \quad-9.4 * 10-18$
Caveat: use powers of two

$$
1.1 * 2^{-1}
$$

Additional caveat: numbers are always in the form: $+/-1 . X X X * 2 Y Y Y$

Components

- More bits for fraction and exponent mean greater range and precision
- Most common: 32 bits (binary32 / float) and 64 bits (binary64 / double)

Components

- More bits for fraction and exponent mean greater range and precision
- Most common: 32 bits (binary32 / float) and 64 bits (binary64 / double)

Question

Standard says	Sign Bit	Exponent	Fraction
Why this order? (Usually) preserves order even if compared as a two's complement integer			

Sign Bit

$0=$ positive; $I=$ negative

Question:What about 0?

Sign Bit

$0=$ positive; $I=$ negative

Question:What about 0?

Both positive and negative zero (quirk).

Fraction Value

Recall: each bit for integers represents a power of two:

1001				
1	0	0	1	
$1 * 2^{\wedge} 3$	$0 * 2^{\wedge} 2$	$0 * 2^{\wedge} 1$	$1 * 2^{\wedge} 0$	
8	0	0	1	

Same idea for fractional part, but with negative exponents:
XXXX.0IIO

0	1	1	0
$0 * 2^{\wedge}-1$	$1 * 2^{\wedge}-2$	$1 * 2^{\wedge}-3$	$0 * 2^{\wedge}-4$
0	0.25	0.125	0

Exponent Value

- Always written as an unsigned number, even for negative exponents
- Uses a biased representation: the actual exponent is always (written exponent - I27)
- If written exponent is 120 , the actual exponent is $(120-127)=-7$

Putting it All Together

- Sign: 0 (positive)
- Exponent: $4+8+16+32+64=124 ; 124-127=-3$
- Fraction: $0 * 2^{-1}+1 * 2^{-2}=0.25$
- Overall magnitude: $(1+0.25) * 2^{-3}=0.15625$

The I is implicit in the encoding $\underset{+/-I . X X X * 2 Y Y Y Y ~}{\longrightarrow}$

Decimal Floating-point to Binary Floating-point

Floating-point Conversion

- Basic idea: determine the correct sign bit, exponent, and fractional part to use, and stitch them together
- Eight-step algorithm for this
- Running example: -9.5625

Step I: Determine Sign Bit

- -9.5625 is negative
- Sign bit is I for negative values

Step 2: Convert Integral Part to Unsigned Binary

- -9.5625's integral portion is 9
- 9 = 1001
- No need to add padding or anything else (yet)

Step 3: Convert Fractional Part to Binary

- -9.5625's fractional portion is 0.5625
- Determine which negative powers of two $\left(2^{-1}, 2^{-2}, 2^{-3}, \ldots\right)$ will sum up to this number, or at least as closely as possible to this number
- Pseudocode algorithm on next side can be used for this

```
fraction = 0.5625
num_iterations = 0
bits = ""
while fraction != 0 and
    num_iterations < 23:
    fraction *= 2
    num iterations++
    if fraction >= 1.0:
        bits += "1"
        fraction -= 1.0
    else:
        bits += "0"
```


Step 3:Algorithm with Example
 0.5625

Iteration	Calculation	>= 1.0?	Output Bit
1	$0.5625 * 2=$ 1.125	yes	1
2	$0.125 * 2=0.25$	no	0
3	$0.25 * 2=0.5$	no	0
4	$0.5 * 2=1.0$	yes	1

Step 4: Normalize Value

- Recall: the encoding assumes numbers are always in the format +/-I.XXX* $2^{\text {YYYY }}$
- We need to put the number in this form
- Integral part (step 2): 1001
- Fractional part (step 3): 1001
- Number overall: integral.fractional: I00I.I00I

Step 4: Normalize Value

- To get I00I.IOOI into the expected I.XXX * $2^{\text {YYYY }}$ format, we need to move the dot to the left 3 positions
- Moves to the left denote positive exponents, moves to the right are negative
- Overall: exponent: 3

Step 5:Add Bias to Exponent

- Exponent (from step 4): 3
- Recall: exponents are stored in biased form, and we will always subtract I 27 from this value later
- ...so here, we always add $127: 3+127=130$

Step 6: Convert Biased Exponent to Binary

- Biased exponent (step 5): I30
- I30 in binary: 10000010

Step 7: Determine Final Mantissa Bits

- Needed: exactly 23 mantissa bits
- From step 4, we initially had 1001.1001, then moved the dot to the left to get I.001I001
- First bits of mantissa here will thus be 0011001

Step 7: Remaining Mantissa Bits

- Initial bits:0011001
- If algorithm in step 3 terminated with I.O, the number is getting represented exactly, with no precision loss. Pad zeros on right until 23 bits.
- May need additional algorithm iterations if some precision loss happened
- Depending on how exponent moved, some bits on the right may also need to be removed (precision loss)

Step 7: Remaining Mantissa Bits

- Initial bits:0011001
- Algorithm terminated exactly, so we can pad with zeros. Final mantissa:
- 001I 0010000000000000000

Step 8: Combine Everything

- Sign bit (step I): I
- Exponent bits (step 6): 10000010
- Mantissa bits (step 7): 001I 0010 0000 00000000000
- Overall: I I000 0010 00II 00I0 00000000 0000000 (copy/pasting all components)
- Or: II00 000I 0001 IOOI 00000000 00000000 (spaces every nibble)

Further Examples / Explanation

- There is also a link named "Instructions for Converting Between Decimal and Binary Floating-Point Numbers" linked off of the course website
- Covers the same thing, but says it a little differently, and has additional examples and links

