COMP 122/L Practice Exam \#1 (With Answers)

This is representative of the kinds of topics and kind of questions you may be asked on the midterm. In addition to this practice exam, you should also review:

- The handouts we did together in class (everything through introductory MIPS assembly)
- Labs 1-3
1.) In decimal, how much is a 8 in position 5 worth?
$8 * 10^{\wedge} 5$
2.) In binary, how much is a 1 in position 7 worth?
$1 * 2^{\wedge} 7$
3.) In hexadecimal, how much is a E in position 4 worth?
$14 * 16^{\wedge} 4$
4.) Convert decimal 19 into 8 -bit unsigned binary. Show all work, including value of each digit.

00010011
$2^{\wedge} 4+2^{\wedge} 1+2^{\wedge} 0=16+2+1$
5.) Convert unsigned binary 11011101 into decimal. Show all work, including value of each digit.
$2^{\wedge} 0+2^{\wedge} 2+2^{\wedge} 3+2^{\wedge} 4+2^{\wedge} 6+2^{\wedge} 7=1+4+8+16+64+128=221$
6.) Convert two's complement binary 11011101 into decimal. Show all work, including value of each digit.

Negation:
00100010
Add one:
00100011
$2^{\wedge} 0+2^{\wedge} 1+2^{\wedge} 5=1+2+32=35$
7.) Consider the following binary number:

11100110

Is it possible to tell if this number is in unsigned or two's complement representation? If yes, explain how. If not, explain why.

It's not possible to tell. Binary numbers are not self-describing. This could be an unsigned number, a two's complement number, a character, or any number of other things.
8.) Convert decimal 2028 to 4 -digit hexadecimal. Show all work, including value of each digit.
$\mathrm{A}=10$
B $=11$
$\mathrm{C}=12$
$\mathrm{D}=13$
$\mathrm{E}=14$
$\mathrm{F}=15$
$2028 / 16^{\wedge} 2=7$, remainder 236
$236 / 16^{\wedge} 1=14(\mathrm{E})$, remainder 12
$12 / 16^{\wedge} 0=12(\mathrm{C})$, remainder 0
0x07EC
$7 * 16^{\wedge} 2+14 * 16^{\wedge} 1+12 * 16^{\wedge} 0=1792+224+12=2028$
9.) Convert decimal -882 to 4-digit hexadecimal. Show all work, including value of each digit.
$882 / 2^{\wedge} 9=1$, remainder 370
$370 / 2^{\wedge} 8=1$, remainder 114
$114 / 2^{\wedge} 7=0$, remainder 114
$114 / 2^{\wedge} 6=1$, remainder 50
$50 / 2^{\wedge} 5=1$, remainder 18
$18 / 2^{\wedge} 4=1$, remainder 2
$2 / 2^{\wedge} 3=0$, remainder 2
$2 / 2^{\wedge} 2=0$, remainder 2
$2 / 2^{\wedge} 1=1$, remainder 0
$0 / 2^{\wedge} 0=0$, remainder 0

Unsigned magnitude: 0000001101110010
$\left(2^{\wedge} 9+2^{\wedge} 8+2^{\wedge} 6+2^{\wedge} 5+2^{\wedge} 4+2^{\wedge} 1=512+256+64+32+16+2=882\right)$
Flip bits: 1111110010001101
Add one: 1111110010001110
To hex: 0xFC8E
10.) What is: $11111101+01000101$? Specify if the result has a carry-out set and if the result sets the overflow bit. Show all work.

```
1
```



```
Carry set, overflow not set
```

11.) What is $11111100+10000000$? Specify if the result has a carry-out set and if the result sets the overflow bit. Show all work.

10000000000000

12.) What is 1111 1100-1000 0000? Specify if the result has a carry-out set and if the result sets the overflow bit. Show all work.

Flip bits: 01111111
Adding one achieved by an initial carry-in of 1 below:

```
1 1
    1
+ 0
---------------------------
Carry set, overflow not set
```

13.) What is $0 x 3 F \& 0 x 5 A$? Provide the answer in two-digit hexadecimal. Show all work.

```
\(0 \times 3 \mathrm{~F}=00111111\)
\(0 \times 5 \mathrm{~A}=01011010\)
\begin{tabular}{llllllll}
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1
\end{tabular}
\(\begin{array}{lllllllll}\& & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0\end{array}\)
--------------------------
    \(\begin{array}{llllllll}0 & 0 & 0 & 1 & 1 & 0 & 1 & 0\end{array}\)
\(0001=0 \times 1\)
\(1010=0 x A\)
0x1A
```

14.) What is $0 x 4 \mathrm{E} \mid 0 \mathrm{xB} 2$? Provide the answer in two-digit hexadecimal. Show all work.

```
0x4E = 0100 1110
0xB2 = 10110010
\(\left.\begin{array}{llllllll}0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ \mid & 1 & 0 & 1 & 1 & 0 & 0 & 1\end{array}\right) 0\)
1111 = 0xF
1110=0xE
0xFE
```

15.) What is $0 \times 7 \mathrm{~A}^{\wedge} 0 \mathrm{x} 14$? Provide the answer in two-digit hexadecimal. Show all work.

$0 \times 7 \mathrm{~A}=01111010$						
$0 \times 14=00010100$						
0	1	1	1	1	0	0
0	0	0	1	0	1	0
0	1	1	0	1	1	0
$0110=0 \times 6$						
$1110=0 x E$						
0x6E						

16.) What is $\sim 0 \mathrm{x} 87$? Provide the answer in two-digit hexadecimal. Show all work.
$0 x 8=1000$
$0 \times 7=0111$

Flip bits: 01111000
17.) What is $11010001 \ll 3$? Express your answer in 8 -bit binary.

10001000
18.) What is $11000101 \gg 2$ for logical shift right? Express your answer in 8 -bit binary.

00110001
19.) What is $11000101 \gg 2$ for arithmetic shift right? Express your answer in 8 -bit binary. 11110001
20.) What is $01000101 \gg 2$ for arithmetic shift right? Express your answer in 8 -bit binary.
21.) Specify the mask and operation you would need to isolate bit 6 of an unknown 8 -bit number. The result of the operation should be $0(0 x 00)$ if bit 6 is 0 , and non-zero if bit 6 is 1 . The mask should be represented in 8-bit binary.

```
    XXXX XXXX
? ???? ????
-----------
    0X00 0000 (wanted)
X & 0 = 0
X & 1 = X
X | 0 = X
X | 1 = 1
    XXXX XXXX
& 0100 0000 (mask and operation)
    0X00 0000
```

22.) Specify the mask and operation you would need to set bits 1 and 4 of an unknown 8 -bit number to 1 . The result of this operation results in a new number, which the unknown number will be subsequently set to. The mask should be represented in 8-bit binary.

```
    XXXX XXXX
? ???? ????
    XXX1 XX1X (wanted)
X & 0 = 0
X & 1 = X
X | 0 = X
X | 1 = 1
    XXXX XXXX
| 0001 0010 (mask and operation)
-----------
    XXX1 XX1X
```

23.) Consider the following 32 -bit binary number:

10000110111111010000001000000000

What is the value of this number, if treated as a 32-bit floating point number according to the IEEE-754 standard? Show all work.

Sign bit: 1
Exponent: 00001101
Mantissa: 11111010000001000000000
Sign is 1 (negative)
Exponent: $8+4+1=13$; 13-127 = -114
Mantissa: $2^{\wedge}-1+2^{\wedge}-2+2^{\wedge}-3+2^{\wedge}-4+2^{\wedge}-5+2^{\wedge}-7+2^{\wedge}-14=0.97662353515625$
Magnitude: $(1+0.97662353515625) * 2^{\wedge}-114=9.517096137844945 \mathrm{e}-35$
Overall value: -9.517096137844945e-35
24.) Consider the following floating point number: 12.609375

Convert this to a 32-bit floating point number according to the IEEE-754 standard. Show all work, including each of the 8 steps.

Step 1: positive number, sign bit 0
Step 2: Integral portion: $12=1100$
Step 3: Fractional part: 0.609375
$0.609375 * 2=1.21875 ; 1$
$0.21875 * 2=0.4375 ; 0$
$0.4375 * 2=0.875 ; 0$
$0.875 * 2=1.75 ; 1$
$0.75 * 2=1.5 ; 1$
$0.5 * 2=1.0 ; 1$
Step 4: normalization
1100.100111
left 3 places (exponent of 3)
Step 5: add bias
$3+127=130$
Step 6: bias to binary
10000010
Step 7: mantissa bits
10010011100000000000000
Step 8: putting it together
01000001010010011100000000000000
01000001010010011100000000000000
25.) What values (in decimal) will be in registers \$t0, \$t1, and \$t2 after this program executes?
li \$t0, 15
li \$t1, 5
addu \$t2, \$t0, \$t1
\$t0: 15, \$t1: 5, \$t2: 20
26.) What values (in signed decimal) will be in registers $\$ \mathrm{t0}$ and $\$ \mathrm{t} 1$ after this program executes?
li \$t0, 7
li \$t1, 11
subu $\$ \mathrm{t} 0, \$ \mathrm{t} 0, \$ \mathrm{t} 1$
\$t0: -4, \$t1: 11
27.) What value (in decimal) will be in registers $\$ \mathrm{t} 0, \$ \mathrm{t} 1$, and $\$ \mathrm{t} 2$ after this program executes?
li \$t0, 6
li \$t1, 5
nor \$t2, \$t0, \$t1
\$t0: 6, \$t1: 5, \$t2: $8(6=(280 \mathrm{~s}) 0110,5=(280 \mathrm{~s}) 0101,(280 \mathrm{~s}) 0110 \mathrm{I}(280 \mathrm{~s}) 0101=$ (28 0s) 0111, ~ (28 0s) $0111=(281 \mathrm{~s}) 1000$, (28 1s) $1000=4294967288)$. Note This question isn't fair because of how big the decimal number is; I originally neglected the 28 0s to the left.
28.) What values (in decimal) will be in registers $\$ \mathrm{t} 0, \$ \mathrm{t} 1$, and $\$ \mathrm{t} 2$ after this program executes?
li \$t0, 12
li \$t1, 4
multu \$t0, \$t1
mflo \$t2
\$t0: 12, \$t1: 4, \$t2: 48
29.) What values (in decimal) will be in registers $\$ \mathrm{t} 0, \$ \mathrm{t} 1$, and $\$ \mathrm{t} 2$ after this program executes?
li \$t0, 14
li \$t1, 4
divu \$t0, \$t1
mflo \$t2
\$t0: 14, \$t1: 4, \$t2: 3, keep in mind this is integer division
30.) What will the following program print, if run with SPIM?
li \$a0, 83
li $\$ \mathrm{v} 0,1$
syscall
83
31.) What value (in decimal) will be in register $\$$ t0 after this program executes?
li \$t0, 3
ori \$t0, \$t0, 8
\$t0: $11(3=0011,8=1000$, OR yields $1011=11)$
32.) What value (in decimal) will be in register $\$ \mathrm{t} 0$ after this program executes?
li \$t0, 7
andi \$t0, \$t0, 13
\$t0: $5(7=0111,13=1101$, AND yields $0101=5)$
33.) What value (in decimal) will be in register $\$$ t0 after this program executes?
li \$t0, 8
xori \$t0, \$t0, 11
\$t0: $3(8=1000,11=1011$, XOR yields $0011=3)$
34.) What does the following program print, if run with SPIM?
li \$a0, 15
li \$v0, 1
syscall
li \$a0, 'a'
li \$v0, 11
syscall
li \$a0, 4
li \$v0, 1
syscall
15a4
35.) What does the following program print, if run with SPIM?
li \$a0, 24
li $\$ \mathrm{v} 0,1$
syscall
li \$a0, 47
li \$v0, 1
syscall
2447
36.) What does the following program print, if run with SPIM?
.data
foo:
.asciiz "Some string\n"
bar:
.asciiz "Some other string\n"
main:
la \$a0, bar
li \$v0, 4
syscall
li \$v0, 10
syscall
Some other string
37.) What does the following program print, if run with SPIM?
.data
foo:
.ascii "alpha"
bar:
.asciiz "beta"
main:
la \$a0, bar
li \$v0, 4
syscall
li \$v0, 10
syscall
beta
38.) What does the following program print, if run with SPIM, and 4 is input by the user?
li \$v0, 5
syscall
addiu \$a0, \$v0, 3
li \$v0, 1
syscall
7
39.) Convert the following C-like code into MIPS assembly. The names of the variables reflect which registers must be used for the MIPS assembly. Do not assume any initial values for the registers. You may use additional registers.

```
$t0 = 3;
$t1 = 7;
$t2 = ($t0 * $t1) + 8;
li $t0, 3
li $t1, 7
mult $t0, $t1
mflo $t2
addiu $t2, $t2, 8
```

40.) Convert the following C-like code into MIPS assembly. The names of the variables reflect which registers must be used for the MIPS assembly. Do not assume any initial values for the registers. You may use additional registers.

```
int s0 = 82;
int s1 = s0 << 2;
int s2 = s1 * 20;
int s3 = s2 + 7;
int s4 = s3 - 24;
int s5 = s4 / 3;
main:
    li $s0, 82 # int s0 = 82;
    sll $s1, $s0, 2 # int s1 = s0 << 2;
    li $t0, 20 # int s2 = s1 * 20 (part 1 of 3)
    mult $s1, $t0 # (part 2 of 3)
    mflo $s2 # (part 3 of 3)
    addi $s3, $s2, 7 # int s3 = s2 + 7
    li $t1, 24 # int s4 = s3 - 24 (part 1 of 2)
    sub $s4, $s3, $t1 # (part 2 of 2)
    li $t2, 3 # int s5 = s4 / 3 (part 1 of 3)
    div $s4, $t2 # (part 2 of 3)
    mflo $s5 # (part 3 of 3)
```

41.) Convert the following C-like code into MIPS assembly. The names of the variables reflect which registers must be used for the MIPS assembly. Do not assume any initial values for the registers. You may use additional registers. The portions in <<>> will require you to use QtSpim functionality. You do not need to exit the program properly.

```
int s0 = <<read integer from the user>>;
int s1 = s0 + 3;
<<print integer s1>>
main:
    li $v0, 5
    syscall
    move $s0, $v0
    addi $s1, $s0, 3
print:
    li $v0, 1
    move $a0, $s1
    syscall
```

