
COMP 122/L Lecture 4
Kyle Dewey

Assembly

What’s in a Processor?

Simple Language

• We have variables, integers, addition, and
assignment

• Restrictions:

• Can only assign integers directly to
variables

• Can only add variables, always two at a
time

x = 5;
y = 7;
z = x + y;

Want to say:
z = 5 + 7;

Translation

Implementation

• What do we need to implement this?

x = 5;
y = 7;
z = x + y;

Core Components

• Some place to hold the statements as we
operate on them

• Some place to hold which statement is
next

• Some place to hold variables

• Some way to add numbers

Back to Processors

• These are all the core components of a
processor

• Processors just reads a series of statements
(instructions) forever. No magic.

Core Components
• Some place to hold the statements as we

operate on them - memory

• Some place to hold which statement is next -
program counter

• Some place to hold variables - registers

• Behave just like variables with fixed names

• Some way to add numbers - arithmetic
logic unit (ALU)

• Some place to hold which statement is
currently being executed - instruction
register (IR)

Basic Interaction

• Copy instruction from memory at
wherever the program counter says into
the instruction register

• Execute it, possibly involving registers and
the arithmetic logic unit

• Update the program counter to point to
the next instruction

• Repeat

Basic Interaction

initialize();
while (true) {
 instruction_register =
 memory[program_counter];
 execute(instruction_register);
 program_counter++;
}

-initialize() will load in the initial state, and put instructions in memory
-execute(instruction_register) will read the instruction and do what it says, potentially looking at registers, assigning things to registers, and using the
arithmetic logic unit
-Have this handy while going through next animation

Memory

?

Registers

x: ?
y: ?
z: ?

Program Counter

?

Instruction Register

?

Arithmetic Logic Unit

?

-All the hardware, before initialization

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

Registers

x: ?
y: ?
z: ?

Program Counter

0

Instruction Register

?

Arithmetic Logic Unit

?

-Initialization occurs. Instructions are in memory, and the program counter is set to 0.
-In a real processor, there is some very basic initialization when it boots up, at which point the BIOS (and subsequently the OS) take over. From then on,
its the responsibility of whatever is loaded in to set the contents of memory, the registers, and the program counter correctly. The operating systems class
covers this stuff.

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

Registers

x: ?
y: ?
z: ?

Program Counter

0

Instruction Register

x = 5;

Arithmetic Logic Unit

?

-We load instruction 0 into the instruction register

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

Registers

x: 5
y: ?
z: ?

Program Counter

0

Instruction Register

x = 5;

Arithmetic Logic Unit

?

-We execute the instruction, setting register x to 5

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

Registers

x: 5
y: ?
z: ?

Program Counter

1

Instruction Register

x = 5;

Arithmetic Logic Unit

0 + 1 = 1

-We update the program counter

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

Registers

x: 5
y: ?
z: ?

Program Counter

1

Instruction Register

y = 7;

Arithmetic Logic Unit

?

-Load in the next instruction

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

Registers

x: 5
y: 7
z: ?

Program Counter

1

Instruction Register

y = 7;

Arithmetic Logic Unit

?

-We execute the instruction, setting register y to 7

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

Registers

x: 5
y: 7
z: ?

Program Counter

2

Instruction Register

y = 7;

Arithmetic Logic Unit

1 + 1 = 2

-We update the program counter

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

Registers

x: 5
y: 7
z: ?

Program Counter

2

Instruction Register

z = x + y;

Arithmetic Logic Unit

?

-Load in the next instruction

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

Registers

x: 5
y: 7
z: ?

Program Counter

2

Instruction Register

z = x + y;

Arithmetic Logic Unit

5 + 7 = 12

-Execute it, consulting the registers to get the values of x and y
-This consults the ALU

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

Registers

x: 5
y: 7
z: 12

Program Counter

2

Instruction Register

z = x + y;

Arithmetic Logic Unit

5 + 7 = 12

-The ALU sets the result

MIPS

-From here on, we’re going to work with MIPS, which refers to a processor architecture
-It has the sort of instructions used in the example, along with many, many more
-This is an actual processor used by people, and it’s actually quite popular

Why MIPS?

• Relevant in the embedded systems domain

• All processors share the same core
concepts as MIPS, just with extra stuff

• ...but most importantly...

It’s Simpler

• RISC (reduced instruction set computing)

• Dozens of instructions as opposed to
hundreds

• Lack of redundant instructions or
special cases

• Five stage pipeline versus 24 stages

-RISC: emphasis is on simplicity. Fewer instructions than CISC (few dozen on MIPS (http://www-inst.eecs.berkeley.edu/~cs61c/resources/
MIPS_Green_Sheet.pdf) versus hundreds on x86 (http://ref.x86asm.net/coder32.html)
-Lack of special cases _could_ mean slower - it lacks special instructions which were intentionally later added on x86 to improve performance on special,
but relatively common, cases
-What a pipeline stage is will be explained more later, but it can be thought of (roughly) the number of steps it takes to execute one instruction

Code on MIPS

x = 5;
y = 7;
z = x + y;

Original MIPS

li $t0, 5
li $t1, 7
add $t2, $t0, $t1

Code on MIPS

x = 5;
y = 7;
z = x + y;

Original MIPS

li $t0, 5
li $t1, 7
add $t2, $t0, $t1

load immediate: put the
given value into a register

$t0: temporary register 0

Code on MIPS

x = 5;
y = 7;
z = x + y;

Original MIPS

li $t0, 5
li $t1, 7
add $t2, $t0, $t1

load immediate: put the
given value into a register

$t1: temporary register 1

Code on MIPS

x = 5;
y = 7;
z = x + y;

Original MIPS

li $t0, 5
li $t1, 7
add $t2, $t0, $t1

add: add the rightmost
registers, putting the result
in the first register

$t2: temporary register 2

Available Registers

• 32 registers in all

• For the moment, we will only consider
registers $t0 - $t9

Assembly

• The code that you see below is MIPS
assembly

• Assembly is *almost* what the machine
sees. For the most part, it is a direct
translation to binary from here (known as
machine code)

li $t0, 5
li $t1, 7
add $t2, $t0, $t1

-More on why I said “the most part” later. Psuedoinstructions are translated to other instructions. Branches also need calculation to occur (for labels), and
there are caveats about the instruction immediately after a branch

Workflow

li $t0, 5
li $t1, 7
add $t2, $t0, $t1

Assembly

Assembler
(analogous to a compiler)

001101....

Machine Code

Machine Code

• This is what the process actually executes
and accepts as input

• Each instruction is represented with 32 bits

• Three different instruction formats; for the
moment, we’ll only look at the R format

add $t3, $t0, $t1

-Let’s start to decipher the MIPS green sheet
-Converting to machine code is completely mechanical - just put the right bits in the right places

Registers

$t0: ?
$t1: ?
$t2: ?

Program Counter

?

Arithmetic Logic Unit

?

Memory

?

Instruction Register

?

-All the hardware, before initialization

Registers

$t0: ?
$t1: ?
$t2: ?

Program Counter

0

Arithmetic Logic Unit

?

Memory

0: li $t0, 5
4: li $t1, 7
8: add $t2, $t0, $t1

Instruction Register

?

-Initialization occurs. Instructions are in memory, and the program counter is set to 0.
-Note that we address by byte. Given that addresses are 32 bits wide (4 bytes long), each address is aligned to four bytes

Registers

$t0: ?
$t1: ?
$t2: ?

Program Counter

0

Arithmetic Logic Unit

?

Memory

0: li $t0, 5
4: li $t1, 7
8: add $t2, $t0, $t1

Instruction Register

li $t0, 5

-We load instruction 0 into the instruction register

Registers

$t0: 5
$t1: ?
$t2: ?

Program Counter

0

Arithmetic Logic Unit

?

Memory

0: li $t0, 5
4: li $t1, 7
8: add $t2, $t0, $t1

Instruction Register

li $t0, 5

-We execute the instruction, setting register $t0 to 5

Registers

$t0: 5
$t1: ?
$t2: ?

Program Counter

4

Arithmetic Logic Unit

0 + 4 = 4

Memory

0: li $t0, 5
4: li $t1, 7
8: add $t2, $t0, $t1

Instruction Register

li $t0, 5

-We update the program counter
-Note that we add 4 instead of one, as instructions are four bytes long

Registers

$t0: 5
$t1: ?
$t2: ?

Program Counter

4

Arithmetic Logic Unit

?

Memory

0: li $t0, 5
4: li $t1, 7
8: add $t2, $t0, $t1

Instruction Register

li $t1, 7

-Load in the next instruction

Registers

$t0: 5
$t1: 7
$t2: ?

Program Counter

4

Arithmetic Logic Unit

?

Memory

0: li $t0, 5
4: li $t1, 7
8: add $t2, $t0, $t1

Instruction Register

li $t1, 7

-We execute the instruction, setting register $t1 to 7

Registers

$t0: 5
$t1: 7
$t2: ?

Program Counter

8

Arithmetic Logic Unit

4 + 4 = 8

Memory

0: li $t0, 5
4: li $t1, 7
8: add $t2, $t0, $t1

Instruction Register

li $t1, 7

-We update the program counter

Registers

$t0: 5
$t1: 7
$t2: ?

Program Counter

8

Arithmetic Logic Unit

?

Memory

0: li $t0, 5
4: li $t1, 7
8: add $t2, $t0, $t1

Instruction Register

add $t2, $t0, $t1

-Load in the next instruction

Registers

$t0: 5
$t1: 7
$t2: ?

Program Counter

8

Arithmetic Logic Unit

5 + 7 = 12

Memory

0: li $t0, 5
4: li $t1, 7
8: add $t2, $t0, $t1

Instruction Register

add $t2, $t0, $t1

-Execute it, consulting the registers to get the values of x and y
-This consults the ALU

Registers

$t0: 5
$t1: 7
$t2: 12

Program Counter

8

Arithmetic Logic Unit

5 + 7 = 12

Memory

0: li $t0, 5
4: li $t1, 7
8: add $t2, $t0, $t1

Instruction Register

add $t2, $t0, $t1

-The ALU sets the result

Adding More
Functionality

• We need a way to display the result

• What does this entail?

-Actually quite the tall order

Adding More
Functionality

• We need a way to display the result

• What does this entail?

• Input / output. This entails talking to
devices, which the operating system
handles

• We need a way to tell the operating
system to kick in

-Actually quite the tall order

Talking to the OS

• We are going to be running on a MIPS
emulator, SPIM

• We cannot directly access system libraries
(they aren’t even in the same machine
language)

• How might we print something?

SPIM Routines

• MIPS features a syscall instruction,
which triggers a software interrupt, or
exception

• Outside of an emulator, these pause the
program and tell the OS to check
something

• Inside the emulator, it tells the emulator
to check something

syscall

• So we have the OS/emulator’s attention.
But how does it know what we want?

syscall

• So we have the OS/emulator’s attention.
But how does it know what we want?

• It has access to the registers

• Put special values in the registers to
indicate what you want

(Finally) Printing an
Integer

• For SPIM, if register $v0 contains 1, then it
will print whatever integer is stored in
register $a0

• Note that $v0 and $a0 are distinct from
$t0 - $t9

-Other SPIM utilities available via syscall: https://www.doc.ic.ac.uk/lab/secondyear/spim/node8.html

Augmenting with
Printing

li $t0, 5
li $t1, 7
add $t3, $t0, $t1

li $v0 1
move $a0, $t3
syscall

Exiting

• If you are using SPIM, then you need to say
when you are done as well

• How might this be done?

Exiting

• If you are using SPIM, then you need to say
when you are done as well

• How might this be done?

•syscall with a special value in $v0
(specifically 10 decimal)

Augmenting with Exiting
// load immediate - load
specific value in a register
li $t0, 5 // %t0 = 5
li $t1, 7
add $t2, $t0, $t1

li $v0, 1 // print int
// move destination, source
move $a0, $t2
syscall

li $v0, 10
syscall

Making it a Full
Program

• Everything is just a bunch of bits

• We need to tell the assembler which bits
should be placed where in memory

-Image source: https://en.wikipedia.org/wiki/Data_segment
-Representation of a program in memory
-What do you recognize?

Allocated as
Program Runs

-Image source: https://en.wikipedia.org/wiki/Data_segment
-You’ve seen these two before
-What might the rest be?

Code

Mutable Global
Variables

Constants
(e.g., strings)

Everything
Below is

Allocated at
Program Load

Allocated as
Program Runs

-Image source: https://en.wikipedia.org/wiki/Data_segment

Marking Code
• Use a .text directive to specify code

.text

li $t0, 5
li $t1, 7
add $t2, $t0, $t1

li $v0 1
move $a0, $t3
syscall

li $v0, 10
syscall

-Directives tell the assembler to do something

Running With SPIM
(add2.asm)

move Instruction

• The move instruction does not actually
show up in SPIM

• It is a pseudoinstruction which is translated
into an actual instruction

move $a0, $t3 addu $a0, $zero, $t3

Original Actual

$zero

• Specified like a normal register, but does
not behave like a normal register

• Writes to $zero are not saved

• Reads from $zero always return 0

But why?

• Why have move as a pseudoinstruction
instead of as an actual instruction?

But why?

• Why have move as a pseudoinstruction
instead of as an actual instruction?

• One less instruction to worry about

• One design goal of RISC is to cut out
redundancy

load intermediate

• The li instruction does not actually show
up in SPIM

• It is a pseudoinstruction which is translated
into actual instructions

• Why might li work this way?

• Hint: instructions and registers are
both 32 bits long

load intermediate

• The li instruction does not actually show
up in SPIM

• It is a pseudoinstruction which is translated
into actual instructions

• Why might li work this way?

• Not enough room in one instruction to
fit everything within 32 bits

• I-type instructions only hold 16 bits

Assembly Coding
Strategy

• Best to write it in C-like language, then
translate down by hand

• This gets more complex when we get into
control structures and memory

x = 5;
y = 7;
z = x + y;

li $t0, 5
li $t1, 7
add $t3, $t0, $t1

More Examples

•swap.asm

•negate.asm

•mult80.asm

•div80.asm

•hello_world.asm

•read_and_print_int.asm

Branches

Conditionals

• Using all the instructions learned so far,
how might we code up the following?

if (x == 0) {
 printf(“x is zero”);
}

Conditionals

• Using all the instructions learned so far,
how might we code up the following?

if (x == 0) {
 printf(“x is zero”);
}

Answer: We can’t (realistically).

Handling Conditionals

• What do we need to implement this?

if (x == 0) {
 printf(“x is zero”);
}

Handling Conditionals

• What do we need to implement this?

• A way to compare numbers

• A way to conditionally execute code

if (x == 0) {
 printf(“x is zero”);
}

Relevant Instructions

• Comparing numbers: set-less-than (slt)

• Conditional execution: branch-on-equal
(beq) and branch-on-not-equal (bne)

• Do we need anything else?

Relevant Instructions

• Comparing numbers: set-less-than (slt)

• Conditional execution: branch-on-equal
(beq) and branch-on-not-equal (bne)

• Do we need anything else?

• This is sufficient

if (x == 0) {
 printf(“x is zero”);
}

.data
x_is_zero:
 .asciiz “x is zero”

.text
 bne $t0, $zero, after_print
 li $v0, 4
 la $a0, x_is_zero
 syscall
after_print:
 li $v0, 10
 syscall

-Labels (the things ending with colons (:)) are symbolic addresses. The assembler will fill these in with whatever they actually point to.
-Note we inverted the condition, because we want to jump if we _don’t_ meet it
-.asciiz indicates a a string which is null-terminated, like in C
-This code is in simple_branch.asm

Loops

• How might we translate the following to
assembly?

sum = 0;
while (n != 0) {
 sum = sum + n;
 n--;
}

-Solution is in add_0_to_n.asm

Control Structure
Examples

•max.asm

•sort2.asm

•add_0_to_n.asm

Memory

Accessing Memory

• Two base instructions: load-word (lw) and
store-word (sw)

• MIPS lacks instructions that do more with
memory than access it (e.g., retrieve
something from memory and add)

• Mark of RISC architecture

Global Variables

• Typically, global variables are placed directly
in memory, not registers

• Why might this be?

Global Variables

• Typically, global variables are placed directly
in memory, not registers

• Why might this be?

• Not enough registers

