
COMP 122/L Week 6
Kyle Dewey

Outline

• Boolean formulas and truth tables

• Introduction to circuits

Boolean Formulas and
Truth Tables

Boolean?

• Binary: true and false

• Abbreviation: 1 and 0

• Easy for a circuit: on or off

• Serves as the building block for all digital
circuits

Basic Operation: AND
AB == A AND B

Basic Operation: AND
AB == A AND B

true only if both A and B are true

Basic Operation: AND
AB == A AND B

true only if both A and B are true

A B AB

0 0 0

0 1 0

1 0 0

1 1 1

Truth Table:

Basic Operation: OR
A + B == A OR B

Basic Operation: OR

false only if both A and B are false
A + B == A OR B

A B A + B

0 0 0

0 1 1

1 0 1

1 1 1

Truth Table:

Basic Operation: OR

false only if both A and B are false
A + B == A OR B

Basic Operation: NOT
!A == A’ == A == NOT A

Basic Operation: NOT
!A == A’ == A == NOT A

Flip the result of the operand

Basic Operation: NOT
!A == A’ == A == NOT A

Flip the result of the operand

Truth Table:
A !A

0 1

1 0

AND, OR, and NOT

• Serve as the basis for everything we will do
in this class

• As simple as they are, they can do just
about everything we want

Truth Table to Formula
• Idea: for every output in the truth table

which has a 1, write an AND which
corresponds to it

• String them together with OR

Truth Table to Formula
• Idea: for every output in the truth table

which has a 1, write an AND which
corresponds to it

• String them together with OR

A B Out

0 0 1

0 1 0

1 0 0

1 1 1

Truth Table to Formula
• Idea: for every output in the truth table

which has a 1, write an AND which
corresponds to it

• String them together with OR

A B Out

0 0 1

0 1 0

1 0 0

1 1 1

Truth Table to Formula
• Idea: for every output in the truth table

which has a 1, write an AND which
corresponds to it

• String them together with OR

!A!B

A B Out

0 0 1

0 1 0

1 0 0

1 1 1

Truth Table to Formula
• Idea: for every output in the truth table

which has a 1, write an AND which
corresponds to it

• String them together with OR

!A!B

A B Out

0 0 1

0 1 0

1 0 0

1 1 1

Truth Table to Formula
• Idea: for every output in the truth table

which has a 1, write an AND which
corresponds to it

• String them together with OR

!A!B AB

A B Out

0 0 1

0 1 0

1 0 0

1 1 1

Truth Table to Formula
• Idea: for every output in the truth table

which has a 1, write an AND which
corresponds to it

• String them together with OR

!A!B AB+

A B Out

0 0 1

0 1 0

1 0 0

1 1 1

Truth Table to Formula
• Idea: for every output in the truth table

which has a 1, write an AND which
corresponds to it

• String them together with OR

A B Out

0 0 1

0 1 0

1 0 0

1 1 1

!A!B AB+Out =

Sum of Products Notation

!A!B AB+Out =

This formula is in sum of products notation:

Sum of Products Notation

!A!B AB+Out =

This formula is in sum of products notation:

Sum

Sum of Products Notation

!A!B AB+Out =

This formula is in sum of products notation:

Sum

Products

Sum of Products Notation

!A!B AB+Out =

This formula is in sum of products notation:

Sum

Products

Very closely related to the sort of sums and products
you’re more familiar with...more on that later.

Bigger Operations
Adding single bits with a carry-in and a carry-out (Cout)

Bigger Operations
Adding single bits with a carry-in and a carry-out (Cout)

1
0

+0
--
1

1
0

+1
--
0

1
1

+0
--
0

1
1

+1
--
1

0
0

+0
--
0

0
0

+1
--
1

0
1

+0
--
1

0
1

+1
--
0 Cout: 1

Cout: 1Cout: 1Cout: 1

Cout: 0Cout: 0Cout: 0

Cout: 0

Single Bit Addition as a
Truth Table

Inputs?

Single Bit Addition as a
Truth Table

Inputs?

Carry-in, first operand bit, second operand bit.

Single Bit Addition as a
Truth Table

Inputs?

Carry-in, first operand bit, second operand bit.

Outputs?

Single Bit Addition as a
Truth Table

Inputs?

Carry-in, first operand bit, second operand bit.

Outputs?

Result bit, carry-out bit.

Single Bit Addition as a
Truth Table

A B Cin R Cout

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Single Bit Addition as a
Truth Table

A B Cin R Cout

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0
0

+0
--

Single Bit Addition as a
Truth Table

A B Cin R Cout

0 0 0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0
0

+0
--
0 Cout: 0

Single Bit Addition as a
Truth Table

A B Cin R Cout

0 0 0 0 0

0 0 1 1 0

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Single Bit Addition as a
Truth Table

A B Cin R Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Single Bit Addition as a
Truth Table

A B Cin R Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0

1 0 1

1 1 0

1 1 1

Single Bit Addition as a
Truth Table

A B Cin R Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1

1 1 0

1 1 1

Single Bit Addition as a
Truth Table

A B Cin R Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0

1 1 1

Single Bit Addition as a
Truth Table

A B Cin R Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1

Single Bit Addition as a
Truth Table

A B Cin R Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Single Bit Addition as a
Formula

Single Bit Addition as a
Formula

A B Cin R Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Single Bit Addition as a
Formula

A B Cin R Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Single Bit Addition as a
Formula

A B Cin R Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Single Bit Addition as a
Formula

A B Cin R Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

R = !A!BCin +
!AB!Cin +
A!B!Cin +

ABCin

Single Bit Addition as a
Formula

A B Cin R Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

R = !A!BCin +
!AB!Cin +
A!B!Cin +

ABCin

Single Bit Addition as a
Formula

A B Cin R Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

R = !A!BCin +
!AB!Cin +
A!B!Cin +

ABCin

Single Bit Addition as a
Formula

A B Cin R Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

R = !A!BCin +
!AB!Cin +
A!B!Cin +

ABCin

Cout = !ABCin +
A!BCin +
AB!Cin +
ABCin

Circuits

Circuits

• AND, OR, and NOT can be implemented
with physical hardware

• Therefore, anything representable with
AND, OR, and NOT can be turned into
a hardware device

AND Gate
Circuit takes two inputs and produces one output

AND Gate
Circuit takes two inputs and produces one output

AB

AND Gate
Circuit takes two inputs and produces one output

AB

A B

Output (AB)

OR Gate
Circuit takes two inputs and produces one output

OR Gate
Circuit takes two inputs and produces one output

A + B

OR Gate
Circuit takes two inputs and produces one output

A + B

A B

Output (A + B)

NOT (Inverter)
Circuit takes one input and produces one output

NOT (Inverter)
Circuit takes one input and produces one output

!A

NOT (Inverter)
Circuit takes one input and produces one output

!A

A

Output (!A)

Formula to Circuit

Formula to Circuit
(AB)C

Formula to Circuit
(AB)C

A B

Formula to Circuit
(AB)C

A B

C

Circuit to Formula

Circuit to Formula

A

B C

Circuit to Formula

A

B C

??? + ???

Circuit to Formula

A

B C

!??? + ???

Circuit to Formula

A

B C

!A + ???

Circuit to Formula

A

B C

!A + (???)(???)

Circuit to Formula

A

B C

!A + (B)(C)

Circuit to Formula

A

B C

!A + BC

Overview

• Circuit minimization

• Boolean algebra

• Karnaugh maps

Circuit Minimization

Motivation

• Unnecessarily large programs: bad

• Unnecessarily large circuits: Very Bad™

• Why?

Motivation

• Unnecessarily large programs: bad

• Unnecessarily large circuits: Very Bad™

• Why?

• Bigger circuits = bigger chips =
higher cost (non-linear too!)

• Longer circuits = more time
needed to move electrons through
= slower

Simplification

• Real-world formulas can often be simplified,
according to algebraic rules

• How might we simplify the following?

R = A*B + !A*B

Simplification

R = A*B + !A*B

R = B(A + !A)

R = B(true)

R = B

• Real-world formulas can often be simplified,
according to algebraic rules

• How might we simplify the following?

Simplification Trick

• Look for products that differ only in one
variable

• One product has the original variable
(A)

• The other product has the other
variable (!A)

R = A*B + !A*B

Additional Example 1

!ABCD + ABCD + !AB!CD + AB!CD

Additional Example 1

!ABCD + ABCD + !AB!CD + AB!CD

BCD(A + !A) + !AB!CD + AB!CD

Additional Example 1

!ABCD + ABCD + !AB!CD + AB!CD

BCD(A + !A) + !AB!CD + AB!CD

BCD + !AB!CD + AB!CD

Additional Example 1

!ABCD + ABCD + !AB!CD + AB!CD

BCD(A + !A) + !AB!CD + AB!CD

BCD + B!CD(!A + A)

BCD + !AB!CD + AB!CD

Additional Example 1

!ABCD + ABCD + !AB!CD + AB!CD

BCD(A + !A) + !AB!CD + AB!CD

BCD + B!CD(!A + A)

BCD + !AB!CD + AB!CD

BCD + B!CD

Additional Example 1

!ABCD + ABCD + !AB!CD + AB!CD

BCD(A + !A) + !AB!CD + AB!CD

BCD + B!CD(!A + A)

BCD + !AB!CD + AB!CD

BCD + B!CD

BD(C + !C)

Additional Example 1

!ABCD + ABCD + !AB!CD + AB!CD

BCD(A + !A) + !AB!CD + AB!CD

BCD + B!CD(!A + A)

BCD + !AB!CD + AB!CD

BCD + B!CD

BD(C + !C)
BD

Additional Example 2
!A!BC + A!B!C + !ABC + !AB!C + A!BC

Additional Example 2
!A!BC + A!B!C + !ABC + !AB!C + A!BC

!A!BC + A!BC + A!B!C + !ABC + !AB!C

Additional Example 2
!A!BC + A!B!C + !ABC + !AB!C + A!BC

!A!BC + A!BC + A!B!C + !ABC + !AB!C

!BC(A + !A) + A!B!C + !ABC + !AB!C

Additional Example 2
!A!BC + A!B!C + !ABC + !AB!C + A!BC

!A!BC + A!BC + A!B!C + !ABC + !AB!C

!BC(A + !A) + A!B!C + !ABC + !AB!C

!BC + A!B!C + !ABC + !AB!C

Additional Example 2
!A!BC + A!B!C + !ABC + !AB!C + A!BC

!A!BC + A!BC + A!B!C + !ABC + !AB!C

!BC(A + !A) + A!B!C + !ABC + !AB!C

!BC + A!B!C + !ABC + !AB!C

!BC + A!B!C + !AB(C + !C)

Additional Example 2
!A!BC + A!B!C + !ABC + !AB!C + A!BC

!A!BC + A!BC + A!B!C + !ABC + !AB!C

!BC(A + !A) + A!B!C + !ABC + !AB!C

!BC + A!B!C + !ABC + !AB!C

!BC + A!B!C + !AB(C + !C)

!BC + A!B!C + !AB

De Morgan’s Laws
Also potentially useful for simplification

De Morgan’s Laws
Also potentially useful for simplification

!(A + B) = !A!B

De Morgan’s Laws
Also potentially useful for simplification

!(A + B) = !A!B

!(AB) = !A + !B

De Morgan Example
!(X + Y)!(!X + Z)

!(X + Y)!(!X + Z)

!A !B

De Morgan Example

!(X + Y)!(!X + Z)

!A !B

De Morgan Example

!(X + Y)!(!X + Z)

!A !B

De Morgan Example

From De Morgan’s Law:
!(A + B) = !A!B

!(X + Y)!(!X + Z)

!A !B

De Morgan Example

From De Morgan’s Law:
!(A + B) = !A!B

!(X + Y + !X + Z)

!(X + Y)!(!X + Z)

!A !B

De Morgan Example

From De Morgan’s Law:
!(A + B) = !A!B

!(X + Y + !X + Z)
!(X + !X + Y + Z)

!(X + Y)!(!X + Z)

!A !B

De Morgan Example

From De Morgan’s Law:
!(A + B) = !A!B

!(X + Y + !X + Z)
!(X + !X + Y + Z)
!(true + Y + Z)

!(X + Y)!(!X + Z)

!A !B

De Morgan Example

From De Morgan’s Law:
!(A + B) = !A!B

!(X + Y + !X + Z)
!(X + !X + Y + Z)
!(true + Y + Z)

!(true)

!(X + Y)!(!X + Z)

!A !B

De Morgan Example

From De Morgan’s Law:
!(A + B) = !A!B

!(X + Y + !X + Z)
!(X + !X + Y + Z)
!(true + Y + Z)

!(true)
false

Scaling Up

• Performing this sort of algebraic
manipulation by hand can be tricky

• We can use Karnaugh maps to make it
immediately apparent as to what can be
simplified

Example
R = A*B + !A*B

Example
R = A*B + !A*B

A B O

0 0 0

0 1 1

1 0 0

1 1 1

Example
R = A*B + !A*B

A B O

0 0 0

0 1 1

1 0 0

1 1 1

A
B

0

1

0 1

0

0

1

1

Example
R = A*B + !A*B

A B O

0 0 0

0 1 1

1 0 0

1 1 1

A
B

0

1

0 1

0

0

1

1

Example
R = A*B + !A*B

A B O

0 0 0

0 1 1

1 0 0

1 1 1

A
B

0

1

0 1

0

0

1

1

Example
R = A*B + !A*B

A B O

0 0 0

0 1 1

1 0 0

1 1 1

A
B

0

1

0 1

0

0

1

1

R = B

Three Variables
• We can scale this up to three variables, by

combining two variables on one axis

• The combined axis must be arranged such
that only one bit changes per position

A
BC

0

1

00 01

?

11 10

?

?

?

?

?

?

?

Three Variable Example

R = !A!BC + !ABC + A!BC + ABC

R = !A!BC + !ABC + A!BC + ABC

A B C R

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

R = !A!BC + !ABC + A!BC + ABC

A B C R

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

A
BC

0

1

00 01

0

11 10

0

1

1

1

1

0

0

R = !A!BC + !ABC + A!BC + ABC

A B C R

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

A
BC

0

1

00 01

0

11 10

0

1

1

1

1

0

0

R = !A!BC + !ABC + A!BC + ABC

A B C R

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

A
BC

0

1

00 01

0

11 10

0

1

1

1

1

0

0

R = C

Another Three Variable
Example

R = !A!B!C + !A!BC + !ABC +
!AB!C + A!B!C + AB!C

A B C R

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

R = !A!B!C + !A!BC + !ABC +
!AB!C + A!B!C + AB!C

A
BC

0

1

00 01

1

11 10

1

1

0

1

0

1

1

R = !A!B!C + !A!BC + !ABC +
!AB!C + A!B!C + AB!C

A B C R

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

A
BC

0

1

00 01 11 10

R = !A!B!C + !A!BC + !ABC +
!AB!C + A!B!C + AB!C

A B C R

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

1

1

1

0

1

0

1

1

A
BC

0

1

00 01 11 10

R = !A!B!C + !A!BC + !ABC +
!AB!C + A!B!C + AB!C

A B C R

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

1

1

1

0

1

0

1

1

A
BC

0

1

00 01 11 10

R = !A!B!C + !A!BC + !ABC +
!AB!C + A!B!C + AB!C

A B C R

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

1

1

1

0

1

0

1

1

A
BC

0

1

00 01 11 10

R = !A!B!C + !A!BC + !ABC +
!AB!C + A!B!C + AB!C

A B C R

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

1

1

1

0

1

0

1

1

R =!A + !C

Four Variable Example

R = !A!B!C!D + !A!B!CD + !A!BC!D +
!ABC!D + A!B!C!D + A!B!CD + A!BC!D

R = !A!B!C!D + !A!B!CD + !A!BC!D +
!ABC!D + A!B!C!D + A!B!CD + A!BC!D

AB
CD

00 01 11 10

1

0

1

0

0

0

1

1

00

01

11

10

0

1

0

1

0

0

0

1

R = !A!B!C!D + !A!B!CD + !A!BC!D +
!ABC!D + A!B!C!D + A!B!CD + A!BC!D

AB
CD

00 01 11 10

1

0

1

0

0

0

1

1

00

01

11

10

0

1

0

1

0

0

0

1

R = !A!B!C!D + !A!B!CD + !A!BC!D +
!ABC!D + A!B!C!D + A!B!CD + A!BC!D

AB
CD

00 01 11 10

1

0

1

0

0

0

1

1

00

01

11

10

0

1

0

1

0

0

0

1

R =!B!C

R = !A!B!C!D + !A!B!CD + !A!BC!D +
!ABC!D + A!B!C!D + A!B!CD + A!BC!D

AB
CD

00 01 11 10

1

0

1

0

0

0

1

1

00

01

11

10

0

1

0

1

0

0

0

1

R =!B!C + !B!D

R = !A!B!C!D + !A!B!CD + !A!BC!D +
!ABC!D + A!B!C!D + A!B!CD + A!BC!D

AB
CD

00 01 11 10

1

0

1

0

0

0

1

1

00

01

11

10

0

1

0

1

0

0

0

1

R =!B!C + !B!D + !AC!D

K-Map Rules in
Summary (1)

• Groups can contain only 1s

• Only 1s in adjacent groups are allowed (no
diagonals)

• The number of 1s in a group must be a
power of two (1, 2, 4, 8...)

• The groups must be as large as legally
possible

• All 1s must belong to a group, even if it’s a
group of one element

• Overlapping groups are permitted

• Wrapping around the map is permitted

• Use the fewest number of groups possible

K-Map Rules in
Summary (2)

Revisiting Problem
!A!BC + A!B!C + !ABC + !AB!C + A!BC

Revisiting Problem
R = !A!BC + A!B!C + !ABC + !AB!C + A!BC

A B C R

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Revisiting Problem
R = !A!BC + A!B!C + !ABC + !AB!C + A!BC

A
BC

0

1

00 01

0

11 10

1

1

1

1

0

1

0

A B C R

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Revisiting Problem
R = !A!BC + A!B!C + !ABC + !AB!C + A!BC

A
BC

0

1

00 01

0

11 10

1

1

1

1

0

1

0

A B C R

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

R = !AC

Revisiting Problem
R = !A!BC + A!B!C + !ABC + !AB!C + A!BC

A
BC

0

1

00 01

0

11 10

1

1

1

1

0

1

0

A B C R

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

R = !AC + A!B

Revisiting Problem
R = !A!BC + A!B!C + !ABC + !AB!C + A!BC

A
BC

0

1

00 01

0

11 10

1

1

1

1

0

1

0

A B C R

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

R = !AC + A!B + !AB!C

Difference

• Algebraic solution: !BC + A!B!C + !AB

• K-map solution: !AC + A!B + !AB!C

• Question: why might these differ?

Difference

• Algebraic solution: !BC + A!B!C + !AB

• K-map solution: !AC + A!B + !AB!C

• Question: why might these differ?

• Both are minimal, in that they have the
fewest number of products possible

• Can be multiple minimal solutions

Difference

• Algebraic solution: !BC + A!B!C + !AB

• K-map solution: !AC + A!B + !AB!C

• Question: why might these differ?

• Both are minimal, in that they have the
fewest number of products possible

• Can be multiple minimal solutions

Difference

A
BC

0

1

00 01

0

11 10

1

1

1

1

0

1

0

K-map solution: !AC + A!B + !AB!C
Algebraic solution: !BC + A!B!C + !AB

Difference

A
BC

0

1

00 01

0

11 10

1

1

1

1

0

1

0

K-map solution: !BC + A!B!C + !AB
Algebraic solution: !BC + A!B!C + !AB

