
COMP 333
Fall 2019

Review: Class-based Inheritance and Virtual Dispatch

1.) Consider the Java class/interface definitions and snippets below. What is the output
of the snippet?

1.a)
public class Base {
 public void method() { System.out.println("base"); }
}
public class Sub1 extends Base {
 public void method() { System.out.println("sub1"); }
}
public class Sub2 extends Base {}

// Begin program
Base a = new Base(); a.method();
Base b = new Sub1(); b.method();
Base c = new Sub2(); c.method();
Sub1 d = new Sub1(); d.method();
Sub2 e = new Sub2(); e.method();

1.b)
public interface MyInterface {
 public void doSomething();
}
public class Foo implements MyInterface {
 public void doSomething() { System.out.println("Foo"); }
}
public class Bar implements MyInterface {
 public void doSomething() { System.out.println("Bar"); }
}

MyInterface a = new Foo(); a.doSomething();
Foo b = new Foo(); b.doSomething();
MyInterface c = new Bar(); c.doSomething();
Bar d = new Bar(); d.doSomething();

2.) Consider the following Java snippet, where ... is a boolean expression:

boolean b = ...;
if (b) {
 System.out.println("foo");
} else {
 System.out.println("bar");
}

This code can be rewritten to entirely avoid the if, by using virtual dispatch instead.
This code is partially rewritten below, where ... is a Conditional expression:

Conditional c = ...;
c.operation();

Write the remaining code necessary to make the above snippet operate the same as
with the if. You may assume that ... does anything you want. As a hint, you will need
classes corresponding to true and false.

