COMP 333 Lecture 2

Kyle Dewey

Object-Oriented
Programming (OOP)

OOP (Minimal
Definition)

® Objects contain fields holding data

® Objects can pass messages to each other

-Notably, this definition doesn't include words like method, class, encapsulation, polymorphism

OOP (Explicit
Methods)

® Objects contain fields holding data and
methods holding executable procedures

® Objects-can-passmessages-to-each-other
® Obijects can call methods on other objects/
have their methods called on

-More specific. Note that calling a method isn't necessarily straightforward - we might not have the method, we might have a backup plan if we don't have
the method, and determining the correct method may be complex

OOP (As Commonly
Understood)

Objects contain fields holding data and methods holding executable procedures

Objects can call methods on other objects/have their methods called on

Objects encapsulate their state using access modifiers

On a call, the correct method may be chosen at runtime, which is a form of polymorphism
Methods can be overridden, allowing for more specific behavior

Abstraction allows for interfaces to contain only immediately relevant information

Classes define a template to make objects from

Classes may inherit fields and methods from other classes

All ideas that were ever good are object-oriented

OOP (As Commonly
Understood)

o Objects contain fields holding data and methods holding executable procedures

o Objects can call methods on other objects/have their methods called on

o Objects encapsulate their state using access modifiers

® On a call, the correct method may be chosen at runtime, which is a form of polymorphism
o Methods can be overridden, allowing for more specific behavior

e Abstraction allows for interfaces to contain only immediately relevant information

e (lasses define a template to make objects from N ot SPeC|ﬁC to OO P

® Classes may inherit fields and methods from other classes

® Allideas that were ever good are object-oriented

-Encapsulation is possible in C

-Anything with higher-order functions allows polymorphism

-Typeclasses (which are unrelated to OOP classes) allow overriding and inheritance
-Abstraction existed before computers did

OOP (As Commonly
Understood)

o Objects contain fields holding data and methods holding executable procedures

o Objects can call methods on other objects/have their methods called on

o Objects encapsulate their state using access modifiers

® On a call, the correct method may be chosen at runtime, which is a form of polymorphism
° Methods can be overridden, allowing for more specific behavior

e Abstraction allows for interfaces to contain only immediately relevant information

e (lasses define a template to make objects from

Specific to

class-based
® Allideas that were ever good are object-oriented O O P

® Classes may inherit fields and methods from other classes

-Prototype-based OOP doesn't have classes

o Objects encapsulate their state using access modifiers

e (lasses define a template to make objects from

® Allideas that were ever good are object-oriented

® On a call, the correct method may be chosen at runtime, whigis a form of po

® Classes may inherit fields and methods from other classes

OOP (As Commonly
Understood)

o Objects contain fields holding data and methods holding executable procedures

o Objects can call methods on other objects/have their methods called on

Many OOP languages

not su‘/:"%?irt this

sm

° Methods can be overridden, allowing for more specific behavior

e Abstraction allows for interfaces to contain only immediately relevant information

-Commonly dynamic languages don't support proper encapsulation (Python, Ruby)

o Objects encapsulate their state using access modifiers

OOP (As Commonly
Understood)

o Objects contain fields holding data and methods holding executable procedures

o Objects can call methods on other objects/have their methods called on

® On a call, the correct method may be chosen at runtime, which is a form of polymorphism

° Methods can be overridden, allowing for more specific behavior

e (lasses define a template to make objects from

® Classes may inherit fields and methods from other classes

® Allideas that were ever good are object-oriented

e Abstraction allows for interfaces to contain only immediately relevant information

Often considered
a bad idea

-Commonly dynamic languages don't support proper encapsulation (Python, Ruby)

OOP (As Commonly
Understood)

Objects contain fields holding data and methods holding executable procedures

Objects can call methods on other objects/have their methods called on

Objects encapsulate their state using access modifiers

On a call, the correct method may be chosen at runtime, which is a form of polymorphism
Methods can be overridden, allowing for more specific behavior

Abstraction allows for interfaces to contain only immediately relevant information

Classes define a template to make objects from

Classes may inherit fields and methods from other classes

All ideas that were ever good are object-oriented OO P was o I”Igl nal Iy

heralded as a
silver bullet

Core Concept:Virtual
Dispatch

Virtual Dispatch

® AKA dynamic dispatch, polymorphism

® The method/code actually called is
determined at runtime

Virtual Dispatch
Example in Java

Virtual Dispatch Use

® Allows for abstracting over computation

® The computation itself becomes a
parameter

Virtual Dispatch Use

® Allows for abstracting over computation

® The computation itself becomes a
parameter

vold foo (SortRoutine s) {

-For example, | can define a method that takes a sorting routine...

Virtual Dispatch Use

® Allows for abstracting over computation

® The computation itself becomes a
parameter

vold foo (SortRoutine s) { ... }

foo(new InsertionSort()):;
foo (new MergeSort());

-...and then call it with different sorting routines
-InsertionSort makes sense on data that you know to be nearly sorted, and MergeSort works best when the data is not nearly sorted

Virtual Dispatch vs. if

® Both conditionally execute code

e 1 f:based on if condition is true/false

® Virtual dispatch: based on the specific
runtime method passed

® i f's that are used to select between
different code behaviors are undesirable

e Smalltalk has 1 fTrue:1fFalse:
method on its boolean type

Exercise:Virtual
Dispatch

Virtual Dispatch in...C?

vold gsort (
volid* base,
size t num,
size t size,
int (*comparator) (const void¥*,
const void*));

-Function pointers exist in C, and are low-level

-Basic idea: code for functions exist in memory, therefore we can have a value that represents the address of an entire function
-By passing different function addresses, we can call different code

-The point: polymorphism is not unique to OOP, and is a core feature of almost any practical language

So What are Classes!?

® Generally, for each class, there is a table of
function pointers

® Method calls involve looking into fixed
locations in this table, and calling the
pointer found

® This table is known as a virtual table, or
vtable

-We have this code here

class Base({
void foo () {
print ("base") ;
}
}

class Sub extends Base({
void foo () {
print ("sub") ;
}
}

Base b = new Sub (),

b.foo () ;

class Base{
void foo () { base foo:

print ("base") ; print "base"
} return

} sub foo:

class Sub extends Base({ print "sub"

void foo () { return
print ("sub") ; base table:

} .word base foo
} sub table:
.word sub foo

Base b = new Sub();

b.foo();

-The pseudo-assembly may look something like this

-Each method gets its own code. At the assembly level, we can disambiguate between Base's foo and Sub's foo by using different names
-There is a table for both Base and Sub

class Base{
void foo () { base foo:

print ("base") ; print "base"
} return

} sub foo:

class Sub extends Base({ print "sub"

void foo () { return
print ("sub") ; base table:

} .word base foo
} sub table:
.word sub foo

Base b = new Sub(); | b = alloc object
b.table = sub table
b.fool(); call b.table[0]

-When we create an object, we allocate space for it

-We initialize the object's table to whatever vtable corresponded to that type. Here we make a Sub, so we use the table for sub

-Each method corresponds to an index in the table. In this case, index 0 gets mapped to foo

-On a call, we look at the table for the object (which is always at a fixed index), and go to the index corresponding to the method called. That holds a
pointer to a function. We call this pointer

Exercise:V Tables

-Why this exercise? Polymorphism tends to look magical and is often heralded as a super-unique thing to OOP. This should disambiguate how
polymorphism works, and make it look less like magic

Prototype-Based
Inheritance

Classes vs. Prototypes

® Classes: classes inherit from other classes
® Prototypes: objects inherit from other objects
® Since objects can be mutated, prototypes allow:

® Dynamically adding or removing inherited
methods

® Dynamically changing hierarchies

® Much more flexible than classes

Demo: Prototype-Based
Inheritance in JavaScript

Exercise: Prototype-
Based Inheritance in
JavaScript

