
COMP 333 Lecture 2
Kyle Dewey

Object-Oriented
Programming (OOP)

OOP (Minimal
Definition)

• Objects contain fields holding data

• Objects can pass messages to each other

-Notably, this definition doesn't include words like method, class, encapsulation, polymorphism

OOP (Explicit
Methods)

• Objects contain fields holding data and
methods holding executable procedures

• Objects can pass messages to each other

• Objects can call methods on other objects/
have their methods called on

-More specific. Note that calling a method isn't necessarily straightforward - we might not have the method, we might have a backup plan if we don't have
the method, and determining the correct method may be complex

OOP (As Commonly
Understood)

• Objects contain fields holding data and methods holding executable procedures

• Objects can call methods on other objects/have their methods called on

• Objects encapsulate their state using access modifiers

• On a call, the correct method may be chosen at runtime, which is a form of polymorphism

• Methods can be overridden, allowing for more specific behavior

• Abstraction allows for interfaces to contain only immediately relevant information

• Classes define a template to make objects from

• Classes may inherit fields and methods from other classes

• All ideas that were ever good are object-oriented

OOP (As Commonly
Understood)

• Objects contain fields holding data and methods holding executable procedures

• Objects can call methods on other objects/have their methods called on

• Objects encapsulate their state using access modifiers

• On a call, the correct method may be chosen at runtime, which is a form of polymorphism

• Methods can be overridden, allowing for more specific behavior

• Abstraction allows for interfaces to contain only immediately relevant information

• Classes define a template to make objects from

• Classes may inherit fields and methods from other classes

• All ideas that were ever good are object-oriented

Not specific to OOP

-Encapsulation is possible in C
-Anything with higher-order functions allows polymorphism
-Typeclasses (which are unrelated to OOP classes) allow overriding and inheritance
-Abstraction existed before computers did

OOP (As Commonly
Understood)

• Objects contain fields holding data and methods holding executable procedures

• Objects can call methods on other objects/have their methods called on

• Objects encapsulate their state using access modifiers

• On a call, the correct method may be chosen at runtime, which is a form of polymorphism

• Methods can be overridden, allowing for more specific behavior

• Abstraction allows for interfaces to contain only immediately relevant information

• Classes define a template to make objects from

• Classes may inherit fields and methods from other classes

• All ideas that were ever good are object-oriented

Specific to
class-based

OOP

-Prototype-based OOP doesn't have classes

OOP (As Commonly
Understood)

• Objects contain fields holding data and methods holding executable procedures

• Objects can call methods on other objects/have their methods called on

• Objects encapsulate their state using access modifiers

• On a call, the correct method may be chosen at runtime, which is a form of polymorphism

• Methods can be overridden, allowing for more specific behavior

• Abstraction allows for interfaces to contain only immediately relevant information

• Classes define a template to make objects from

• Classes may inherit fields and methods from other classes

• All ideas that were ever good are object-oriented

Many OOP languages
do not support this

-Commonly dynamic languages don't support proper encapsulation (Python, Ruby)

OOP (As Commonly
Understood)

• Objects contain fields holding data and methods holding executable procedures

• Objects can call methods on other objects/have their methods called on

• Objects encapsulate their state using access modifiers

• On a call, the correct method may be chosen at runtime, which is a form of polymorphism

• Methods can be overridden, allowing for more specific behavior

• Abstraction allows for interfaces to contain only immediately relevant information

• Classes define a template to make objects from

• Classes may inherit fields and methods from other classes

• All ideas that were ever good are object-oriented

Often considered
a bad idea

-Commonly dynamic languages don't support proper encapsulation (Python, Ruby)

OOP (As Commonly
Understood)

• Objects contain fields holding data and methods holding executable procedures

• Objects can call methods on other objects/have their methods called on

• Objects encapsulate their state using access modifiers

• On a call, the correct method may be chosen at runtime, which is a form of polymorphism

• Methods can be overridden, allowing for more specific behavior

• Abstraction allows for interfaces to contain only immediately relevant information

• Classes define a template to make objects from

• Classes may inherit fields and methods from other classes

• All ideas that were ever good are object-oriented OOP was originally
heralded as a
silver bullet

Core Concept: Virtual
Dispatch

Virtual Dispatch

• AKA dynamic dispatch, polymorphism

• The method/code actually called is
determined at runtime

Virtual Dispatch
Example in Java

Virtual Dispatch Use

• Allows for abstracting over computation

• The computation itself becomes a
parameter

Virtual Dispatch Use

• Allows for abstracting over computation

• The computation itself becomes a
parameter

void foo(SortRoutine s) { ... }

-For example, I can define a method that takes a sorting routine...

Virtual Dispatch Use

• Allows for abstracting over computation

• The computation itself becomes a
parameter

void foo(SortRoutine s) { ... }

foo(new InsertionSort());
foo(new MergeSort());

-...and then call it with different sorting routines
-InsertionSort makes sense on data that you know to be nearly sorted, and MergeSort works best when the data is not nearly sorted

Virtual Dispatch vs. if
• Both conditionally execute code

• if: based on if condition is true/false

• Virtual dispatch: based on the specific
runtime method passed

• if's that are used to select between
different code behaviors are undesirable

• Smalltalk has ifTrue:ifFalse:
method on its boolean type

Exercise: Virtual
Dispatch

Virtual Dispatch in...C?

void qsort(
 void* base,
 size_t num,
 size_t size,
 int (*comparator)(const void*,
 const void*));

-Function pointers exist in C, and are low-level
-Basic idea: code for functions exist in memory, therefore we can have a value that represents the address of an entire function
-By passing different function addresses, we can call different code
-The point: polymorphism is not unique to OOP, and is a core feature of almost any practical language

So What are Classes?

• Generally, for each class, there is a table of
function pointers

• Method calls involve looking into fixed
locations in this table, and calling the
pointer found

• This table is known as a virtual table, or
vtable

class Base{
 void foo() {
 print("base");
 }
}
class Sub extends Base{
 void foo() {
 print("sub");
 }
}

Base b = new Sub();

b.foo();

-We have this code here

class Base{
 void foo() {
 print("base");
 }
}
class Sub extends Base{
 void foo() {
 print("sub");
 }
}

Base b = new Sub();

b.foo();

base_foo:
 print "base"
 return
sub_foo:
 print "sub"
 return
base_table:
 .word base_foo
sub_table:
 .word sub_foo

-The pseudo-assembly may look something like this
-Each method gets its own code. At the assembly level, we can disambiguate between Base's foo and Sub's foo by using different names
-There is a table for both Base and Sub

class Base{
 void foo() {
 print("base");
 }
}
class Sub extends Base{
 void foo() {
 print("sub");
 }
}

Base b = new Sub();

b.foo();

base_foo:
 print "base"
 return
sub_foo:
 print "sub"
 return
base_table:
 .word base_foo
sub_table:
 .word sub_foo

b = alloc_object
b.table = sub_table
call b.table[0]

-When we create an object, we allocate space for it
-We initialize the object's table to whatever vtable corresponded to that type. Here we make a Sub, so we use the table for sub
-Each method corresponds to an index in the table. In this case, index 0 gets mapped to foo
-On a call, we look at the table for the object (which is always at a fixed index), and go to the index corresponding to the method called. That holds a
pointer to a function. We call this pointer

Exercise: VTables

-Why this exercise? Polymorphism tends to look magical and is often heralded as a super-unique thing to OOP. This should disambiguate how
polymorphism works, and make it look less like magic

Prototype-Based
Inheritance

Classes vs. Prototypes
• Classes: classes inherit from other classes

• Prototypes: objects inherit from other objects

• Since objects can be mutated, prototypes allow:

• Dynamically adding or removing inherited
methods

• Dynamically changing hierarchies

• Much more flexible than classes

Demo: Prototype-Based
Inheritance in JavaScript

Exercise: Prototype-
Based Inheritance in

JavaScript

