
COMP 333 Practice Exam # 2

Swift

Pattern Matching

1.) Consider the following enum definition:

enum SomeEnum {
 case foo(Int)
 case bar(Int, Int)
 case baz(Int, Int, Int)
}

Write a function named test which takes a value of type SomeEnum. The function should do
the following:

• If given a foo, it should return the value in the foo

• If given a bar, it should return the sum of the two values in the bar

• If given a baz, it should return the sum of the first and last values in the baz. You should

not introduce a variable for the second (middle) value in the baz.

An example call to the function follows: test(SomeEnum.baz(1, 2, 3))

Generics and Higher-Order Functions

2.) Write the body of the following function, or say if it's impossible to implement. If it's
impossible to implement, explain why.

func combine<A, B>(a: A, b: B) -> (A, B) {

}

3.) Write the body of the following function, or say if it's impossible to implement. If it's
impossible to implement, explain why.

func combine2<A, B>(a: A) -> ((B) -> (A, B)) {

}

4.) Write the body of the following function, or say if it's impossible to implement. If it's
impossible to implement, explain why.

func combine3<A, B>(tup: (A, B)) -> A {

}

5.) Write the body of the following function, or say if it's impossible to implement. If it's
impossible to implement, explain why.

func combine4<A, B>(a: A, f: (A) -> B) -> (A, B) {

}

6.) Consider the following enum definition:

enum Something<A, B, C> {
 case alpha(A)
 case beta(B)
 case gamma(C)
}

6.a.) Write the body of the following function, or say if it's impossible to implement. If it's
impossible to implement, explain why.

func combine5<A, B, C>(s: Something<A, B, C>) -> (A, B, C) {

}

6.b.) Write the body of the following function, or say if it's impossible to implement. If it's
impossible to implement, explain why.

func combine6<A>(s: Something<A, A, A>) -> A {

}

7.) Write the body of the following function, or say if it's impossible to implement. If it's
impossible to implement, explain why.

func combine7<A, B>(f: (A) -> B, b: B) -> A {

}

8.) Consider the following enum definition representing lists:

indirect enum List<A> {
 case cons(A, List<A>)
 case empty
}

8.a.) Write a function named partition which takes a predicate and divides a generic list into
a pair of returned generic lists. The first element of the pair holds all elements for which the
predicate returned true, and the second element of the pair holds all elements for which the
predicate returned false. An example call is below:

let (matching, nonmatching) =
 partition(list: List.cons(1, List.cons(2, List.empty)),
 pred: { e in e > 1 })
// matching: List.cons(2, List.empty)
// nonmatching: List.cons(1, List.empty)

8.b.) Write a function named takeWhile which returns a list of consecutive list elements for
which a given predicate pred returns true. Once pred returns false, the list is returned.
takeWhile is generic. Example calls are below:

let list = List.cons(1, List.cons(2, List.cons(3, List.empty)))
let first = takeWhile(list: list, pred: { e in e < 3 })
// first: List.cons(1, List.cons(2, List.empty))
let second = takeWhile(list: list, pred: { e in e < 2 })
// second: List.cons(1, List.empty)
let third = takeWhile(list: list, pred: { e in e > 1 })
// third: List.empty

Protocols and Extensions

9.a.) Define a protocol named Equals which defines an equals method. equals returns
true if two values equal each other. Example calls are below, assuming Int implements the
Equals protocol:

1.equals(1) // returns true
2.equals(3) // returns false

9.b.) Implement the Equals protocol for Int, using extension. As a hint, == can be used to
test if two integers are identical, as with 1 == 2.

9.c.) Consider the following enum definition:

enum Thing<A> {
 case thing1
 case thing2(A)
}

Implement the Equals protocol for Thing, using extension. As a hint, you'll need to tell the
compiler that A needs to implement the Equals protocol. Two thing1 values should equal
each other, and a thing2 value should equal another thing2 value if both thing2 values
contain the same value of type A.

10.) The following code does not compile. Why not?

protocol Foo { func fooMethod() -> Bool }
extension Int : Foo { func fooMethod() -> Bool { return true } }
true.fooMethod()

Parser Combinators

11.) Consider the following grammar, token enum, and function signatures:

exp ::= 'true' |
 'false' |
 '(' 'if' exp exp exp ')' |
 '(' 'while' exp exp ')'

enum Token {
 case leftParen
 case rightParen
 case ifToken
 case whileToken
 case trueToken
 case falseToken
}

func tokenP(_ token: Token) -> Parser<Unit>
func andP(_ lhs: @escaping @autoclosure () -> Parser<Unit>,
 _ rhs: @escaping @autoclosure () -> Parser<Unit>)
 -> Parser<Unit>
func orP(_ lhs: @escaping @autoclosure () -> Parser<Unit>,
 _ rhs: @escaping @autoclosure () -> Parser<Unit>)
 -> Parser<Unit>

Note that andP and orP have been modified from assignment 2 to operate on
Parser<Unit>. As such, they won't parse in abstract syntax trees, but they will still succeed
if they are able to parse, and fail if they are not. Write a parser which will accept this grammar,
using tokenP, andP, and orP. You do not need to worry about producing the abstract syntax
tree. You may assume you are defining a parser named expressionP.

12.) Consider again the signatures provided in question #11:

func tokenP(_ token: Token) -> Parser<Unit>
func andP(_ lhs: @escaping @autoclosure () -> Parser<Unit>,
 _ rhs: @escaping @autoclosure () -> Parser<Unit>)
 -> Parser<Unit>
func orP(_ lhs: @escaping @autoclosure () -> Parser<Unit>,
 _ rhs: @escaping @autoclosure () -> Parser<Unit>)
 -> Parser<Unit>

12.a.) What does @escaping mean?

12.c.) What does @autoclosure mean?

12.b) Why is @autoclosure necessary for parser combinators?

Prolog

Basic Procedures

13.) Define a procedure named isFish which encompasses the following idea: goldfish,
bass, and carp are all fish. isFish should be defined as a series of facts.

14.) Assume the presence of a procedure named isInstrument, which lists various musical
instruments. Define a procedure named musicalFish, which succeeds if the input is both a
fish (according to isFish) and an instrument (according to isInstrument; bass are both).

15.) Consider the following procedure:

foo(0).
foo(1) :-
 X = 1.
foo(2) :-
 X = Y,
 X = 1,
 Y = 2.
foo(3).

What are the solutions to the following query?

?- foo(X).

