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Outline

• Dynamic typing

• Memory management

• Reference counting

• Garbage collection
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var x = 7; 
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Java

int x = 7; 
// compile-time error 
x = "hello";
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in the same context

• De-emphasizes what correct values are



Disadvantages

• More programs are possible

• Potentially very different values can be used 
in the same context

• De-emphasizes what correct values are



Memory Management



Reference Counting

• Basic idea: objects maintain a count of how 
many things point to them

• Every type a new pointer to the object is 
added, the count is increased

• Each time a pointer is redirected 
elsewhere, the count is decreased

• When the count reaches 0, it deletes itself, 
possibly decreasing counts elsewhere
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Other Example
function example() { 
  var x = new Object(); 
  x.foo = new Object(); 
  return x.foo; 
}

x
Object 
count: 0 

foo Object 
count: 1

Not in scope
after return Gets deleted...

Deletion depends
on caller



Exercise: Code Snippets 
with Reference 

Counting



Reference Counting 
Issue

• Cycles don't properly get reclaimed

• In practice, we need either a user-exposed 
way to forcibly decrement a count, or 
garbage collection augmentation



Garbage Collection

• Main idea: build a root set of values, usually 
based on variables in scope

• Treat memory like a directed graph, and 
record which objects are reachable from 
values in the root set

• Delete everything that isn't reachable
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Exercise: Code Snippets 
with Garbage 

Collection



Reference Counting vs. GC

• Reference counting is good for real time systems

• GC tends to be faster overall, but incurs sporadic 
pauses

• GC can collect everything without user support

• GC tends to be more popular (Java/JVM, 
JavaScript, Go, Ruby), but reference counting is 
common (Swift, mostly Python, some of Rust)


