
COMP 333 Lecture 3
Kyle Dewey

Outline

• Dynamic typing

• Memory management

• Reference counting

• Garbage collection

Dynamic typing
Basic idea: types are associated with values

Dynamic typing
Basic idea: types are associated with values

JavaScript

var x = 7;
x = "hello";

Dynamic typing
Basic idea: types are associated with values

JavaScript

var x = 7;
x = "hello";

Java

int x = 7;
// compile-time error
x = "hello";

Advantages

• More programs are possible

• Potentially very different values can be used
in the same context

• De-emphasizes what correct values are

Disadvantages

• More programs are possible

• Potentially very different values can be used
in the same context

• De-emphasizes what correct values are

Memory Management

Reference Counting

• Basic idea: objects maintain a count of how
many things point to them

• Every type a new pointer to the object is
added, the count is increased

• Each time a pointer is redirected
elsewhere, the count is decreased

• When the count reaches 0, it deletes itself,
possibly decreasing counts elsewhere

Example
var x = new Object();

Example
var x = new Object();

x Object
count: 1

Example
var x = new Object();

x Object
count: 1

x = new Object();

Example
var x = new Object();

x Object
count: 1

x = new Object();

x Object
count: 1

Object
count: 0

Example
var x = new Object();

x Object
count: 1

x = new Object();

x Object
count: 1

Object
count: 0

Deletes
itself

Other Example
function example() {
 var x = new Object();
 x.foo = new Object();
 return x.foo;
}

Other Example
function example() {
 var x = new Object();
 x.foo = new Object();
 return x.foo;
}

x Object
count: 1

Other Example
function example() {
 var x = new Object();
 x.foo = new Object();
 return x.foo;
}

x
Object
count: 1

foo Object
count: 1

Other Example
function example() {
 var x = new Object();
 x.foo = new Object();
 return x.foo;
}

x
Object
count: 1

foo Object
count: 1

Other Example
function example() {
 var x = new Object();
 x.foo = new Object();
 return x.foo;
}

x
Object
count: 0

foo Object
count: 1

Not in scope
after return

Other Example
function example() {
 var x = new Object();
 x.foo = new Object();
 return x.foo;
}

x
Object
count: 0

foo Object
count: 1

Not in scope
after return Gets deleted...

Other Example
function example() {
 var x = new Object();
 x.foo = new Object();
 return x.foo;
}

x
Object
count: 0

foo Object
count: 1

Not in scope
after return Gets deleted...

Deletion depends
on caller

Exercise: Code Snippets
with Reference

Counting

Reference Counting
Issue

• Cycles don't properly get reclaimed

• In practice, we need either a user-exposed
way to forcibly decrement a count, or
garbage collection augmentation

Garbage Collection

• Main idea: build a root set of values, usually
based on variables in scope

• Treat memory like a directed graph, and
record which objects are reachable from
values in the root set

• Delete everything that isn't reachable

Example
var x = new Object();

Example
var x = new Object();

x Object

Example
var x = new Object();

x Object

x = new Object();

Example
var x = new Object();

x Object

x = new Object();

x Object

Object

Example
var x = new Object();

x Object

x = new Object();

x Object

Object

GC Starts
Root set:

x

Example
var x = new Object();

x Object

x = new Object();

x Object

Object

GC Starts
Root set:

x

Example
var x = new Object();

x Object

x = new Object();

x Object

Object

GC Starts
Root set:

x

Example
var x = new Object();

x Object

x = new Object();

x Object

Object

GC Starts
Root set:

x

Exercise: Code Snippets
with Garbage

Collection

Reference Counting vs. GC

• Reference counting is good for real time systems

• GC tends to be faster overall, but incurs sporadic
pauses

• GC can collect everything without user support

• GC tends to be more popular (Java/JVM,
JavaScript, Go, Ruby), but reference counting is
common (Swift, mostly Python, some of Rust)

