
COMP 333 Practice Exam 

This is representative of the kinds of topics and kind of questions you may be asked on the 
midterm.


Virtual Dispatch in Java


1.) Consider the following Java code:


public interface I1 { 
  public void doThing(); 
} 
public class C1 implements I1 { 
  public void doThing() { System.out.println("c1"); } 
} 
public class C2 implements I1 { 
  public void doThing() { System.out.println("c2"); } 
} 
public class Main { 
  public void makeCall(I1 value) { 
    value.doThing(); 
  } 
  public static void main(String[] args) { 
    I1 t1 = new C1(); 
    I1 t2 = new C2(); 
    makeCall(t1); 
    makeCall(t2); 
  } 
} 

What is the output of the main method above?




2.) Consider the following code snippet:


public class Main { 
  public static void main(String[] args) { 
    Operation op1 = new AddOperation(); 
    Operation op2 = new SubtractOperation(); 
    int res1 = op1.doOp(5, 3); 
    int res2 = op2.doOp(5, 3); 
    System.out.println(res1); 
    System.out.pritnln(res2); 
  } 
} 

Define any interfaces and/or classes necessary to make this snippet print 8, followed by 2.




Prototype-Based Inheritance in JavaScript 

3.a.) Define a constructor for Dog objects, where each Dog object has a name.  An example 
code snippet is below, illustrating usage:


let d = new Dog("Rover"); 
console.log(d.name); // prints Rover 

3.b.) Define a different constructor for Dog, which puts a bark method directly on the Dog 
objects.  The bark method should print "Woof!" when called.  Example usage is below:


let d = new Dog("Sparky"); 
d.bark(); // prints Woof! 

3.c.) Define a method named growl for Dog objects, which prints "[dog name] growls" when 
called.  Use Dog's prototype, instead of putting the method directly on Dog objects 
themselves.  Example usage is below:


let d = new Dog("Rocky"); 
d.growl(); // prints Rocky growls 



4.) Consider the JavaScript code below:


function Animal(name) { this.name = name; } 
Animal.prototype.getName = function() { return this.name; } 
function Bird(name) { Animal.call(this, name); } 
Bird.prototype = Object.create(Animal.prototype); 
Bird.prototype.fly = function() { 
  console.log(this.getName() + " flies"); 
} 
function Mouse(name) { 
  this.name = name; 
  this.squeak = function() { 
    console.log(this.name + " squeaks"); 
  } 
} 
Mouse.prototype = Object.create(Animal.prototype); 
Mouse.prototype.fly = Bird.prototype.fly; 
let b1 = new Bird("Coco"); let b2 = new Bird("Sunny"); 
let m1 = new Mouse("Pip"); let m2 = new Mouse("Ruby"); 

Write a memory diagram which shows how memory looks after this program executes.  Your 
diagram should include the objects and fields associated with b1, b2, m1, m2, 
Mouse.prototype, and Bird.prototype, Animal.prototype.  As a hint, the 
__proto__ field on objects refers to the corresponding object's prototype.




5.) Consider the test suite below, using assertEquals from the first assignment:


function test1() { 
  let t1 = new Obj("foo"); 
  assertEquals("foo", t1.field); 
} 

function test2() { 
  let t2 = new Obj("bar"); 
  assertEquals("barbar", t2.doubleField()); 
} 

function test3() { 
  let t3 = new Obj("baz"); 
  assertEquals(false, t3.hasOwnProperty("doubleField")); 
} 

Write JavaScript code which will make the above tests pass.




Higher-Order Functions in JavaScript 

6.) Write the output of the following JavaScript code:


function foo(fooParam) { 
  return function (innerParam) { 
    return fooParam - innerParam; 
  } 
} 

let f1 = foo(7); 
let f2 = foo(10); 
console.log(f1(2)); 
console.log(f2(3)); 
console.log(f1(4)); 
console.log(f2(5)); 

7.) Write the output of the following JavaScript code:


function guard(thing) { 
  try { 
    return thing(); 
  } catch (error) { 
    return "ERROR"; 
  } 
} 

function f() { 
  throw "hello"; 
} 

console.log(guard(f)); 
console.log(guard(function() { return 42; })); 



8.) Consider the following array definition in JavaScript:


let arr = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 

8.a) Use filter to get an array of all even elements in arr.


8.b) Use map to get an array of strings, where each string represents a number in arr.  As a 
hint, you can call the toString() method on a number (e.g., 5.toString()) in JavaScript 
to get its string representation.


8.c) Use reduce to get the last element in arr.


8.d) Use a combination of filter and reduce to get the sum of all elements in arr which are 
greater than 5.




Algebraic Data Structures in Swift 

9.) Consider the following information:


• A TrafficDevice is either a stopSign or a trafficLight.  A trafficLight is 
associated with a specific LightColor.


• A LightColor can be one of red, yellow, or green.


9.a.) Write two enum definitions in Swift which represent this information.


9.b.) Define a mutable variable named lc which holds the red color.  The type of the variable 
should be LightColor.


9.c.) Define an immutable variable named td which holds a traffic light with the green color.  
The type of the variable should be TrafficDevice.


