
COMP 333

Fall 2021

Prototype-based Inheritance

1.) Consider the JavaScript code below:

function Base() {}

function Sub1() {}

function Sub2() {}

// <<some additional code>>

let base = new Base();

let sub1 = new Sub1();

let sub2 = new Sub2();

base.method(); // prints "base"

sub1.method(); // prints "sub1"

sub2.method(); // prints "base"

console.log(base instanceof Base); // prints "true"

console.log(sub1 instanceof Base); // prints "true"

console.log(sub2 instanceof Base); // prints "true"

Code is elided where <<some additional code>> is. Write what this elided code
must be below.

Base.prototype.method = function () {

 console.log("base");

}

Sub1.prototype = new Base();

Sub1.prototype.method = function () {

 console.log("sub1");

}

Sub2.prototype = new Base();

2.) Consider the JavaScript code below. What is the output of this code?

function AddThis(x) { this.x = x; }

AddThis.prototype.add = function (y) { return this.x + y; }

let withOne = new AddThis(1);

let withFive = new AddThis(5);

console.log(withOne.add(1));

console.log(withFive.add(2));

2

7

3.) Write JavaScript code which will effectively add a sub method to all instances of
AddThis, where sub should subtract this.x from its parameter and return the result.
As a hint, you'll need to add it to AddThis' prototype.

AddThis.prototype.sub = function (param) {

 return param - this.x;

}

4.) Write JavaScript code which will add a mul method to only newly-created
instances of AddThis, where mul should multiply this.x with its parameter and return
the result. Newly-created AddThis instances should have the same add and sub
methods as before, without repeating their definitions. Existing instances of AddThis
should not have a mul method. As a hint, you should not modify AddThis' prototype.

let temp = AddThis.prototype;

AddThis.prototype = {};

AddThis.prototype.__proto__ = temp;

AddThis.prototype.mul = function (param) {

 return this.x * param;

}

