
COMP 333: OOP and Java
Kyle Dewey



Object-Oriented 
Programming (OOP)



OOP (Minimal 
Definition)

• Objects contain fields holding data

• Objects can pass messages to each other



OOP (Explicit 
Methods)

• Objects contain fields holding data and 
methods holding executable procedures

• Objects can pass messages to each other

• Objects can call methods on other objects/
have their methods called on



OOP (As Commonly 
Understood)

• Objects contain fields holding data and methods holding executable procedures

• Objects can call methods on other objects/have their methods called on

• Objects encapsulate their state using access modifiers

• On a call, the correct method may be chosen at runtime, which is a form of polymorphism

• Methods can be overridden, allowing for more specific behavior

• Abstraction allows for interfaces to contain only immediately relevant information

• Classes define a template to make objects from

• Classes may inherit fields and methods from other classes

• All good ideas are object-oriented



OOP (As Commonly 
Understood)

Not specific to OOP

• Objects contain fields holding data and methods holding executable procedures

• Objects can call methods on other objects/have their methods called on

• Objects encapsulate their state using access modifiers

• On a call, the correct method may be chosen at runtime, which is a form of polymorphism

• Methods can be overridden, allowing for more specific behavior

• Abstraction allows for interfaces to contain only immediately relevant information

• Classes define a template to make objects from

• Classes may inherit fields and methods from other classes

• All good ideas are object-oriented



OOP (As Commonly 
Understood)

Specific to
class-based

OOP

• Objects contain fields holding data and methods holding executable procedures

• Objects can call methods on other objects/have their methods called on

• Objects encapsulate their state using access modifiers

• On a call, the correct method may be chosen at runtime, which is a form of polymorphism

• Methods can be overridden, allowing for more specific behavior

• Abstraction allows for interfaces to contain only immediately relevant information

• Classes define a template to make objects from

• Classes may inherit fields and methods from other classes

• All good ideas are object-oriented



OOP (As Commonly 
Understood)

Many OOP languages
do not support this

• Objects contain fields holding data and methods holding executable procedures

• Objects can call methods on other objects/have their methods called on

• Objects encapsulate their state using access modifiers

• On a call, the correct method may be chosen at runtime, which is a form of polymorphism

• Methods can be overridden, allowing for more specific behavior

• Abstraction allows for interfaces to contain only immediately relevant information

• Classes define a template to make objects from

• Classes may inherit fields and methods from other classes

• All good ideas are object-oriented



OOP (As Commonly 
Understood)

Often considered
a bad idea

• Objects contain fields holding data and methods holding executable procedures

• Objects can call methods on other objects/have their methods called on

• Objects encapsulate their state using access modifiers

• On a call, the correct method may be chosen at runtime, which is a form of polymorphism

• Methods can be overridden, allowing for more specific behavior

• Abstraction allows for interfaces to contain only immediately relevant information

• Classes define a template to make objects from

• Classes may inherit fields and methods from other classes

• All good ideas are object-oriented



OOP (As Commonly 
Understood)

OOP was originally
heralded as a
silver bullet

• Objects contain fields holding data and methods holding executable procedures

• Objects can call methods on other objects/have their methods called on

• Objects encapsulate their state using access modifiers

• On a call, the correct method may be chosen at runtime, which is a form of polymorphism

• Methods can be overridden, allowing for more specific behavior

• Abstraction allows for interfaces to contain only immediately relevant information

• Classes define a template to make objects from

• Classes may inherit fields and methods from other classes

• All good ideas are object-oriented



Core Concept: Virtual 
Dispatch



Virtual Dispatch

• AKA dynamic dispatch, polymorphism

• The method/code actually called is 
determined at runtime



Virtual Dispatch Use

• Allows for abstracting over computation

• The computation itself becomes a 
parameter



Virtual Dispatch Use

• Allows for abstracting over computation

• The computation itself becomes a 
parameter

void foo(SortRoutine s) { ... }



Virtual Dispatch Use

• Allows for abstracting over computation

• The computation itself becomes a 
parameter

void foo(SortRoutine s) { ... }

foo(new InsertionSort()); 
foo(new MergeSort());



Virtual Dispatch vs. if
• Both conditionally execute code

• if: based on if condition is true/false

• Virtual dispatch: based on the specific 
runtime method passed

• if's that are used to select between 
different code behaviors are undesirable

• Smalltalk has ifTrue:ifFalse: 
method on its boolean type



Virtual Dispatch 
Example in Java


