
COMP 333
Fall 2025

Midterm Practice Exam #1

This is representative of the kinds of topics and kind of questions you may be asked on
the midterm. This practice exam, along with assignment 1 and the in-class handouts on
Java and types, are intended to be comprehensive of everything on the exam. That is, I
will not ask anything that's not somehow covered by those sources.

You are permitted to bring two 8.5 x 11 sheets of paper into the exam with you,
containing either printed or handwritten notes. Both sides of both sheets can be used.

Virtual Dispatch - Conceptual Understanding
1.) Name one reason why someone might want to use virtual dispatch (i.e., Java's way
of implementing ad-hoc polymorphism).

2.) Name one reason why someone might not want to use virtual dispatch (i.e., Java's
way of implementing ad-hoc polymorphism).

Virtual Dispatch in Java

3.) Consider the following Java code:

public interface I1 {
 public void doThing();
}
public class C1 implements I1 {
 public void doThing() { System.out.println("c1"); }
}
public class C2 implements I1 {
 public void doThing() { System.out.println("c2"); }
}
public class Main {
 public static void makeCall(I1 value) {
 value.doThing();
 }
 public static void main(String[] args) {
 I1 t1 = new C1();
 I1 t2 = new C2();
 makeCall(t1);
 makeCall(t2);
 }
}

What is the output of the main method above?

4.) Consider the following code snippet:

public class Main {
 public static void main(String[] args) {
 Operation op1 = new AddOperation(); // line 3
 Operation op2 = new SubtractOperation(); // line 4
 int res1 = op1.doOp(5, 3); // line 5
 int res2 = op2.doOp(5, 3); // line 6
 System.out.println(res1); // line 7; should print 8
 System.out.pritnln(res2); // line 8; should print 2
 }
}

Define any interfaces and/or classes necessary to make this snippet print 8, followed by
2.

5.) Consider the following incomplete Java code and output:

public class Incomplete {
 public static void printResult(final Runner r, final int i) {
 boolean result = r.someMethod(i);
 System.out.println(result);
 }
 public static void main(final String[] args) {
 final IsEven even = new IsEven();
 printResult(even, 3); // prints false
 printResult(even, 4); // prints true
 final IsLessThan ltFive = new IsLessThan(5);
 printResult(ltFive, 4); // prints true
 printResult(ltFive, 6); // prints false
 final IsLessThan ltZero = new IsLessThan(0);
 printResult(ltZero, -1); // prints true
 printResult(ltZero, 1); // prints false
 }
}

Define any interfaces and/or classes necessary to make the output in the comments
work. You should not have to modify any code here. Multiple answers are possible.

6.) Consider the following Java code, which simulates a lock which can be either locked
or unlocked. The lock is an immutable data structure, so locking or unlocking returns a
new lock in an appropriate state.

public class Lock {
 private final boolean locked;

 public Lock(final boolean locked) {
 this.locked = locked;
 }

 public Lock unlock() {
 if (locked) {
 System.out.println("lock unlocked");
 return new Lock(false);
 } else {
 System.out.println("lock already unlocked");
 return this;
 }
 }

 public Lock lock() {
 if (!locked) {
 System.out.println("lock locked");
 return new Lock(true);
 } else {
 System.out.println("lock already locked");
 return this;
 }
 }

 public boolean isLocked() {
 return locked;
 }
}

Refactor this code to use virtual dispatch, instead of using if/else. As a hint, you
should have a base class/interface for Lock, and subclasses for locked and unlocked
locks. Lock itself doesn't need a constructor, and you do not need to worry about
maintaining compatibility with existing code that uses Lock.

---(Continued on to next page)---

Types

7.) The code below does not compile. Why?

public interface MyInterface {
 public void foo();
}

public class MyClass implements MyInterface {
 public void foo() {}
 public void bar() {}

 public static void main(String[] args) {
 MyInterface a = new MyClass();
 a.bar();
 }
}

8.) Java supports subtyping polymorphism. Write a Java code snippet that compiles
and uses subtyping polymorphism.

9.) Name one reason why someone might prefer static typing over dynamic typing.

10.) Name one reason why someone might prefer dynamic typing over static typing.

11.) Name one reason why someone might prefer strong typing over weak typing.

12.) Name one reason why someone might prefer weak typing over strong typing.

13.) Consider the following code, written in some unknown language:

define doSomething(x) {
 return x.foo(7);
}

obj = Foo("hello")
value = doSomething(obj)
print(value)
obj = Foo("goodbye")

Provide an argument why this language might be statically-typed, OR why it might be
dynamically-typed. Both are possible; the explanation why is the only important part.

14.) Consider the following code snippet in some unknown object-oriented language:

Object obj = new Foo();
Foo f = (Foo)obj;

The following checks are relevant:

1. Ensure that class Object and Foo exist
2. Ensure that Foo's constructor takes no arguments
3. Ensure that obj is in scope on the second line
4. With respect to the cast on the second line, ensure that obj's type is actually Foo

Identify which checks are most likely to be performed when for each kind of language.

15.) The code below is written in some unknown language. The code attempts to
access an array at some index, and then print the value that was at that position:

let element = arr[index];
print(element);

You run this code snippet with different values for arr and index, including for values
of index which are out of bounds for arr. With out-of-bounds array accesses, you
observe that the code prints out a variety of values, and even sometimes crashes.

From these observations, is this language most likely strongly-typed or weakly-typed?
In 1-2 sentences, explain your reasoning.

Statically-Typed Dynamically-Typed

Strongly-Typed Runtime:

Compile-time:

Runtime:

Compile-time:

Weakly-Typed Runtime:

Compile-time:

