
COMP 333: Concepts of Programming Languages
Fall 2025

Instructor: Kyle Dewey (kyle.dewey@csun.edu)
Course Web Page: https://kyledewey.github.io/comp333-fall25
Office: JD 4419

Course Description (From the Catalog)
Discussion of issues in the design, implementation and use of high-level programming
languages through a historical framework, including how languages reflect different
design philosophies and use requirements and the technical issues in the design of
main abstraction constructs of programming languages. Other approaches to imperative
or object-oriented programming, functional programming, logical programming and
parallel programming.

Learning Objectives:
Successful students will be able to:
• Understand when to use, and write programs using:

• Execution approaches: compilation, interpretation, and just-in-time (JIT) compilation
• Memory management: manual, reference counting, garbage collection, ownership

and borrowing
• Types: dynamic typing, static typing, strong typing, weak typing, untyped

• Write programs utilizing class-based and prototyped-based inheritance, virtual
dispatch, and higher-order functions

• Write memory diagrams representing the connections between allocated values,
differentiate between stack-allocated and heap-allocated values, and understand
when to use stack vs. heap allocation.

Course Motivation and Goal
Programming languages, like the tools in a typical toolbox, are built to solve problems.
A toolbox may have different sizes and shapes of both hammers and screwdrivers.
Similarly, different programming languages may be closely related to each other, or
potentially very different from each other. The more different a language or tool, the
more different the kind(s) of problem(s) it is designed to solve.

The danger of getting too close to one language or programming paradigm is that your
thinking adapts to fit that language/paradigm. In keeping with the toolbox analogy, if
you have a hammer, then all problems become nails. I may insist on fixing a leaky pipe
with a sledgehammer, but I won't get back my security deposit.

My primary goal with this course is to expand your toolbox, and expose you to
languages which behave very differently from each other. My intention is to warp your
brain a bit, and force you to think in ways you're not used to. This will improve your

mailto:kyle.dewey@csun.edu

problem-solving skills, specifically by allowing you to look at the same problem from
different angles.

A secondary goal is to give you a sense of how different languages are built, and how
they work. We will focus primarily on modern language design and implementation,
though many basic concepts haven't changed much in the 60+ year history of
programming languages.

Textbook and Other Required Class Materials
No textbooks are required. You may wish to look at Programming Language
Pragmatics (Michael Scott) as a reference, though the course does not follow that book.
A computer, be it a laptop or otherwise, is required.

Grading
Your grade is based on the following components:

There will be a series of coding-based assignments issued throughout the semester,
which cover core parts of the different languages and paradigms you'll use. Not all of
these will be weighted evenly, nor will you always be given the same amount of time for
assignments. Exactly which assignments are assigned depends on how the class
progresses. In general, assignments will be submitted through Canvas (https://
canvas.csun.edu/). In the event that there is a problem with Canvas, you may email
your assignment to me (kyle.dewey@csun.edu) as a last resort.

Plus/minus grading is used, according to the scale below:

Assignments 14%

Midterm Exam 1 27%

Midterm Exam 2 27%

Final Exam 32%

If your score is >=... ...you will receive...

92.5 A

89.5 A-

86.5 B+

82.5 B

79.5 B-

76.5 C+

72.5 C

https://canvas.csun.edu
https://canvas.csun.edu
mailto:kyle.dewey@csun.edu

If you are not present for the final exam and you have not previously made alternative
arrangements with me for the final exam, a grade of WU (unauthorized withdrawal) will
be assigned.

Collaboration for Assignments
All students are required to submit their own individual work. For assignments (and
only assignments), students may discuss among each other, as long as they don’t
digitally share code. That is, you cannot simply email your code to someone else.
However, you may discuss your actual code with someone else, including merely
viewing code. The only stipulation is that if you do discuss with someone else, say
so in your submission. This is not for punitive reasons; this is only so I get a sense of
who is working with who. My intention with this policy is to enable collaborative
learning, as opposed to simply sharing a solution.

Plagiarism and Academic Honesty
While collaboration is allowed on assignments, you are responsible for all of your own
work. You may not take code from online sources and submit it as your own. If you
must take code from online, cite where you took the code from. Worst-case scenario,
you'll receive a 0 for whatever you took, but no further action will be taken. In general,
code taken online which solves more general things (e.g., "how do I iterate through an
array in Java") is more acceptable than code which solves more specific things (e.g.,
"how do I implement a recursive find function over immutable linked lists in JavaScript").
General bits of code only give you pieces of a solution, whereas specific bits of code
often will give you a complete copy/pastable solution. If it's not 100% clear if something
is permitted to be used or not, you can always ask me beforehand.

Chegg is specifically disallowed as an online resource, as it's almost always used as
a repository of complete questions with answers. That is, the questions/answers are
practically always of the specific kind mentioned above.

For assignments, LLM-based tools like ChatGPT are discouraged, though not outright
disallowed. It can be easy to overly on such tools without realizing it, to the point where
the tool does all the work, with zero understanding of what it produces. If you do use
such tools, you should be aware of the following trap I've seen a lot of students fall into
over the past year:

69.5 C-

66.5 D+

62.5 D

59.5 D-

0 F

If your score is >=... ...you will receive...

• The student gets a solution from an LLM
• The student tests the solution, and observes that all tests pass
• The student looks at the code a bit, and decides that it "feels" right. This feeling is

usually based on the relative length, complexity, formatting, and variable naming of
the code, and not on its actual behavior.

• The student bombs a high-scoring, closely-related exam question, which asked
them to write similar code for a similar problem.

• The student realizes they did not actually understand what the LLM produced, and
then needs additional help to hopefully catch up.

In general, for this course, my opinion is that if an LLM is to be used, it's best to use
prompts that are general (e.g., how does virtual dispatch in Java work?) as opposed to
specific (e.g., write a Java program using virtual dispatch that solves the specific
problem I've been asked to solve). A course-specific pitfall is that LLMs have been
trained over a lot of sources which are just plain wrong, leading to confidently incorrect
LLM answers.

No discussion whatsoever is allowed during exams, except with the instructor. Any
violations can result in a failing grade for the assignment/exam, or potentially failing the
course for egregious cases. A report will also be made to the Dean of Academic Affairs.
Students who repeatedly violate this policy across multiple courses may be suspended
or even expelled.

Communication
In general, any questions should be made through Canvas. You can also email me,
though I'm usually much faster to respond to Canvas than my general email.

Late Policy / Exam Scheduling
Late assignments will be accepted without penalty if prior arrangements have been
made or there is some sort of legitimate emergency (at my discretion). If you must be
absent from an exam, contact me ASAP to see if alternative accommodations can be
made.

If an assignment is otherwise submitted late, it will be penalized according to the
following scale:

If your assignment is late
by <= this many days...

...it will be deducted by...

1 10%

2 30%

3 60%

4+ 100%

To be clear, assignments which are submitted four or more days beyond the deadline
will not receive credit. The reason for such a harsh late policy is that we will generally
discuss solutions in class shortly after the deadline, and this late policy discourages
people from simply pulling a solution from an in-class discussion.

Class Feedback
I am open to any questions / comments / concerns / complaints you have about the
class. If there is something relevant you want covered, I can push to make this happen.
I operate off of your feedback, and no feedback tells me “everything is ok”.

Class Schedule (Subject to Change):
Week Monday Wednesday

1 8/25: Introduction, motivation 8/27: OOP introduction with Java, using
inheritance to avoid code duplication

2 9/1: Labor day (campus closed) 9/3: Using inheritance to avoid code
duplication, class-based inheritance,
subtyping, virtual dispatch

3 9/8: class-based inheritance,
subtyping, virtual dispatch

9/10: Functional/immutable lists:
representation and operations

4 9/15: Class-based OOP spillover 9/17: JavaScript introduction, types
introduction (static vs. dynamic, strong
vs. weak, untyped)

5 9/22: Types; Higher-order
functions: use and high-level
representation

9/24: Higher-order functions: use and
high-level representation

6 9/29: Higher-order functions: use
and high-level representation

10/1: Higher-order functions: use and
high-level representation

7 10/6: Midterm Exam 1 Review 10/8: Midterm Exam 1

8 10/13: Midterm Exam 1
Retrospective; Objects and
prototype-based inheritance

10/15: Objects and prototype-based
inheritance

9 10/20: Objects and prototype-
based inheritance

10/22: Objects and prototype-based
inheritance

10 10/27: Objects and prototype-
based inheritance; interpretation
vs. compilation

10/29: interpretation vs. compilation,
Just-in-time compilation; stack vs.
heap-allocation

Final Exams:

• Section 16308 (11:30 AM - 12:45 PM): 12/17, 10:15 AM - 12:15 PM, in Noski

Auditorium 101

• Section 16886 (4:00 PM - 5:15 PM): 12/15, 5:30 PM - 7:30 PM, in JD 3510

11 11/3: Memory reclamation
(manual, reference counting,
garbage collection, ownership
and borrowing)

11/5: Memory reclamation spillover

12 11/10: Introduction to Rust;
Ownership and borrowing in Rust

11/12: Ownership and borrowing in
Rust

13 11/17: Midterm 2 Review 11/19: Midterm Exam 2

14 11/24: Midterm Exam 2
Retrospective

11/26: Ownership and borrowing in
Rust

15 12/1: Enums and pattern
matching in Rust

12/3: Enums and pattern matching in
Rust

16 12/8: Rust Spillover 12/10: Final Exam Review

Week Monday Wednesday

