
COMP 333 Lecture 1
Kyle Dewey

About Me

• I research automated testing techniques
and their intersection with CS education

• My dissertation used logic programming
extensively

• I frequently use functional programming

• This is my third time teaching this class

About this Class

• See something wrong? Want something
improved? Email me about it!
(kyle.dewey@csun.edu)

• I generally operate based on feedback

mailto:kyle.dewey@csun.edu

Bad Feedback

• This guy sucks.

• This class is boring.

• This material is useless.

-I can’t do anything in response to this

Good Feedback

• This guy sucks, I can’t read his writing.

• This class is boring, it’s way too slow.

• This material is useless, I don’t see how it
relates to anything in reality.

• I can’t fix anything if I don’t know what’s
wrong

-I can actually do something about this!

Why this Course?

• Navigating programming languages

• Understanding how programming languages
work

• Shaping how you think about programming

Navigating Languages

-There are a LOT of different programming languages.
-Many of these are similar to each other, and many are different
-Basic question: which should you use?

Animals

Camels
Birds

Pointy

Lambda

Coffee

Whatever this is

-Without knowing about language features, we can't properly classify them
-If we can't classify them, we don't understand them, and we can't select the right tool for the job

How Languages Work

• Proper debugging demands knowledge of
underlying language

• Knowledge prevents gotchas (and gotchas
usually end with greater knowledge)

• While languages abound, language features
are sparse

-"Gotchas", meaning completely unintuitive behavior, usually leading to subtle bugs
-Surprisingly, there aren't that many language features out there. This is good for learning languages, but somewhat depressing (most features were
developed in the 60's)

Thinking About
Programming

-Old adage: if all you have is a hammer, then every problem is a nail

-This is great if you have a nail

-If you have a screw?

-You hit it with the hammer

-Ehh success?

-Leaky pipe?

-You hit it with the hammer!

-Leaks more?

-NEEDS MORE HAMMER

-Still leaking?

-HAMMER

The Point

• Languages influence how you think and
approach problems

• The same problem can be MUCH simpler
to solve in a different language

The Point

• Languages influence how you think and
approach problems

• The same problem can be MUCH simpler
to solve in a different language

for {
 a <- Seq(1, 2, 3)
 b <- Seq("foo", "bar")
} yield (a, b)

Scala

The Point

• Languages influence how you think and
approach problems

• The same problem can be MUCH simpler
to solve in a different language

for {
 a <- Seq(1, 2, 3)
 b <- Seq("foo", "bar")
} yield (a, b)

Scala Java

• Bulk of Summer

• Bulk of semester

-"Bulk of Summer": a student worked on something that did this for the bulk of a Summer
-"Bulk of semester": another student did a big part of this as part of a class project
-Four lines of code in Scala

Common
Misconceptions:

Performance

Always Write the
Fastest Code

• "Premature optimization is the root of all
evil" - Donald Knuth

• Programmer median salary: $86,550/year

• AWS m4.large (reserved): $507/year

-This gets pushed to sell low-level, imperative languages
-Programmer median salary (2019): https://money.usnews.com/careers/best-jobs/computer-programmer/salary
-m4.large: 2 cores, 8 GB

High-Level Languages
are Slow

• Java can outperform C

• Choice of algorithm usually WAY more
important

• I have written Prolog that dramatically
outperformed Java (thousands -
millions of times faster)

Common
Misconceptions: Utility

FP is Purely Academic

• Functional programming makes
concurrency much simpler

• Good software engineering practices tend
to enforce functional styles

• Most modern languages now support
functional programming features

FP is Purely Academic

• Functional programming makes
concurrency much simpler

• Good software engineering practices tend
to enforce functional styles

• Most modern languages now support
functional programming features

LP is Useless

• Logic programming is highly specialized, but
not useless

• Recall: Prolog 9 million times faster than Java

• I've used it to find bugs in multiple compilers

LP is Useless

• Logic programming is highly specialized, but
not useless

• Recall: Prolog 9 million times faster than Java

• I've used it to find bugs in multiple compilers

-NASA NPAS (fault detection and response using ideas from logic programming): https://techport.nasa.gov/view/94884

LP is Useless

• Logic programming is highly specialized, but
not useless

• Recall: Prolog 9 million times faster than Java

• I've used it to find bugs in multiple compilers

-NASA NPAS (fault detection and response using ideas from logic programming): https://techport.nasa.gov/view/94884

Common
Misconceptions:

Stagnation

Industry Moves Slowly

• COBOL was once a vital language

• Perl was once the champion of the Internet

• Java has lost tons of ground to Python

• Companies that cannot adapt, die

Staying in a Comfort
Zone

• "I know Python and Ruby, so I already am
pretty flexible"

Staying in a Comfort
Zone

• "I know Python and Ruby, so I already am
pretty flexible"

-This is kind of like saying I know hammer and other hammer

Staying in a Comfort
Zone

• "I know Python and Ruby, so I already am
pretty flexible"

-Pick up a screwdriver, already

What this Course Is

• Heavy on programming

• Exposure to object-oriented, functional,
logical, and a little parallel programming

• Exposure to various language features in
the context of the languages you'll use

What this Course Isn't

• Advanced topics in any one style

• In-depth look at language implementations

• Heavy on theory

-We don't have enough time to become experts on any of these topics; each one needs their own course (and hint hint there is a Logic Programming
course (COMP 410))
-If you want language implementations, take compilers and language design (COMP 430)

Languages We Will Use

• Java (class-based object-oriented
programming)

• JavaScript (prototype-based object-oriented
programming)

• Swift (functional programming)

• Prolog (logic programming)

• Java 8 (parallelism)

Why Java?

• 5th most popular language on StackOverflow

• OOP with class-based inheritance

• Even if you have used it, you may be rusty

• Statically typed, garbage collected, just-in-
time compilation

Why JavaScript?

• Most popular language on StackOverflow

• OOP with prototype-based inheritance

• Dynamically typed, garbage collected,
(typically bytecode) interpreted, just-in-time
compilers available

-It's prototype-based instead of class based, which is a different kind of object-oriented. Though classes are now a thing

Why Swift?

• 17th most popular on StackOverflow, and 9th
most loved

• Not exactly a functional language, but it has key
functional features without getting too weird

• Statically typed, unbounded and bounded
generics, compiled, algebraic data types, pattern
matching, typeclasses, optional call-by-name,
reference counting

-Was formerly 15th most popular and 6th most loved in 2019; this will probably be the last year we use Swift if it keeps declining
-We'll probably not have time to cover typeclasses, but they work in a distinct manner from object-oriented classes, despite solving similar problems

Why Prolog?

• Arguably the simplest logic programming
language out there

• For better or worse, logic programming is
largely synonymous with Prolog's features

• Unification, nondeterminism, both
(bytecode) interpreted and compiled

Syllabus

