
COMP 333 Practice Exam #1

This is representative of the kinds of topics and kind of questions you may be asked on the
midterm. This practice exam, along with assignment 1 and the first two in-class handouts, are
intended to be comprehensive of everything on the exam. That is, I will not ask anything that's
not somehow covered by those sources.

You are permitted to bring two 8.5 x 11 sheets of paper into the exam with you, as long as they
have handwritten notes on them. Both sides of both sheets can be used. To be clear, these
must be entirely handwritten.

Virtual Dispatch - Conceptual Understanding

1.) Name one reason why someone might want to use virtual dispatch.

2.) Name one reason why someone might not want to use virtual dispatch.

Virtual Dispatch in Java

3.) Consider the following Java code:

public interface I1 {
 public void doThing();
}
public class C1 implements I1 {
 public void doThing() { System.out.println("c1"); }
}
public class C2 implements I1 {
 public void doThing() { System.out.println("c2"); }
}
public class Main {
 public void makeCall(I1 value) {
 value.doThing();
 }
 public static void main(String[] args) {
 I1 t1 = new C1();
 I1 t2 = new C2();
 makeCall(t1);
 makeCall(t2);
 }
}

What is the output of the main method above?

4.) Consider the following code snippet:

public class Main {
 public static void main(String[] args) {
 Operation op1 = new AddOperation(); // line 3
 Operation op2 = new SubtractOperation(); // line 4
 int res1 = op1.doOp(5, 3); // line 5
 int res2 = op2.doOp(5, 3); // line 6
 System.out.println(res1); // line 7; should print 8
 System.out.pritnln(res2); // line 8; should print 2
 }
}

Define any interfaces and/or classes necessary to make this snippet print 8, followed by 2.

5.) Consider the following incomplete Java code and output:

public class Incomplete {
 public static void printResult(final Runner r, final int i) {
 boolean result = r.someMethod(i);
 System.out.println(result);
 }

 public static void main(final String[] args) {
 final IsEven even = new IsEven();
 printResult(even, 3); // prints false
 printResult(even, 4); // prints true

 final IsLessThan ltFive = new IsLessThan(5);
 printResult(ltFive, 4); // prints true
 printResult(ltFive, 6); // prints false

 final IsLessThan ltZero = new IsLessThan(0);
 printResult(ltZero, -1); // prints true
 printResult(ltZero, 1); // prints false
 }
}

Define any interfaces and/or classes necessary to make the output in the comments work. You
should not have to modify any code here. Multiple answers are possible.

6.) Consider the following Java code, which simulates a lock which can be either locked or
unlocked. The lock is an immutable data structure, so locking or unlocking returns a new lock
in an appropriate state.

public class Lock {
 private final boolean locked;

 public Lock(final boolean locked) {
 this.locked = locked;
 }

 public Lock unlock() {
 if (locked) {
 System.out.println("lock unlocked");
 return new Lock(false);
 } else {
 System.out.println("lock already unlocked");
 return this;
 }
 }

 public Lock lock() {
 if (!locked) {
 System.out.println("lock locked");
 return new Lock(true);
 } else {
 System.out.println("lock already locked");
 return this;
 }
 }

 public boolean isLocked() {
 return locked;
 }
}

Refactor this code to use virtual dispatch, instead of using if/else. As a hint, you should have a
base class/interface for Lock, and subclasses for locked and unlocked locks. Lock itself
doesn't need a constructor, and you do not need to worry about maintaining compatibility with
existing code that uses Lock. (Continued on to next page)

Types

7.) The Java code below does not compile. Why?

public interface MyInterface {
 public void foo();
}

public class MyClass implements MyInterface {
 public void foo() {}
 public void bar() {}

 public static void main(String[] args) {
 MyInterface a = new MyClass();
 a.bar();
 }
}

8.) Java supports subtyping. Write a Java code snippet that compiles and uses subtyping.

9.) Name one reason why someone might prefer static typing over dynamic typing.

10.) Name one reason why someone might prefer dynamic typing over static typing.

11.) Name one reason why someone might prefer strong typing over weak typing.

12.) Name one reason why someone might prefer weak typing over strong typing.

13.) Consider the following code, written in some unknown language:

define myFunc(x, y) {
 return x + y;
}

a = 1
b = 2
myFunc(a, b)

Provide an argument why this language might be statically-typed, OR why it might be
dynamically-typed. Both are possible; the explanation why is the only important part.

14.) Consider the following code snippet which accesses (what is hopefully) an array at some
unknown position:

hopefullyArray[unknownPosition]

Say what this code will do for each of the following scenarios. Your answers only need to be a
few words, perhaps 2 sentences at most. As a hint, all your answers are likely to be different
for each scenario.

14.a.) Assume this is written in a statically typed, strongly typed language. What sort of checks
(if any) will likely be done at compile time? What sort of checks (if any) will likely be done at
runtime?

14.b.) Assume we are in a statically typed, weakly typed language. What sort of checks (if any)
will likely be done at compile time? What sort of checks (if any) will likely be done at runtime?

14.c.) Assume we are in a dynamically typed, strongly typed language. What sort of checks (if
any) will likely be done at compile time? What sort of checks (if any) will likely be done at
runtime?

14.c.) Assume we are in a dynamically typed, weakly typed language. What sort of checks (if
any) will likely be done at compile time? What sort of checks (if any) will likely be done at
runtime?

Higher-Order Functions in JavaScript

15.) Write the output of the following JavaScript code:

function foo(fooParam) {
 return function (innerParam) {
 return fooParam - innerParam;
 }
}

let f1 = foo(7);
let f2 = foo(10);
console.log(f1(2));
console.log(f2(3));
console.log(f1(4));
console.log(f2(5));

16.) Write the output of the following JavaScript code:

// Representing lists as higher-order functions.
// The function returns true if the given element exists in the list,
// else false (e.g., contains). The weird part is that the list
// _is_ the function.

function nil() {
 // nil doesn't contain any elements, so it definitely doesn't
 // contain searchKey, either
 return function (searchKey) {
 return false;
 };
}

function cons(head, tail) {
 // cons contains the given element searchKey, if either the
 // head of the list is searchKey, or if the tail of the list
 // contains searchKey
 return function (searchKey) {
 if (searchKey === head) {
 return true;
 } else {
 return tail(searchKey);
 }
 }
}

let emptyList = nil();
let one = cons(1, nil());
let oneTwo = cons(1, cons(2, nil()));

console.log(emptyList(1));
console.log(one(1));
console.log(oneTwo(1));

console.log();

console.log(emptyList(2));
console.log(one(2));
console.log(oneTwo(2));

17.) Consider the following JavaScript code with corresponding output, which calls an unseen
function called mystery:

function output() {
 console.log("foo");
}

let f1 = mystery(output);
f1();
console.log();

let f2 = mystery(f1);
f2();
console.log();

let f3 = mystery(f2);
f3();
console.log();

Output:

foo
foo

foo
foo
foo
foo

foo
foo
foo
foo
foo
foo
foo
foo

Define the mystery function below.

18.) Write the output of the following JavaScript code:

function cap(min, max, wrapped) {
 return function (param) {
 let temp = wrapped(param);
 if (temp < min) {
 return min;
 } else if (temp > max) {
 return max;
 } else {
 return temp;
 }
 };
}

function addTen(param) {
 return param + 10;
}

function subTen(param) {
 return param - 10;
}

let f1 = cap(0, 10, addTen);
let f2 = cap(0, 100, addTen);
let f3 = cap(0, 10, subTen);
let f4 = cap(0, 100, subTen);

console.log(f1(0));
console.log(f1(5));
console.log(); // prints an empty line

console.log(f2(0));
console.log(f2(5));
console.log(); // prints an empty line

console.log(f3(0));
console.log(f3(5));
console.log(); // prints an empty line

console.log(f4(0));
console.log(f4(5));
console.log(); // prints an empty line

19.) Consider the following incomplete JavaScript code and output, which calls an unprovided
function named invert:

function greaterThanFive(input) {
 return input > 5;
}

let notGreaterThanFive = invert(greaterThanFive);
let notEqualsFoo = invert(function (e) { return e === "foo"; });

console.log(notGreaterThanFive(3));
console.log(notGreaterThanFive(7));
console.log(notEqualsFoo("foo"));
console.log(notEqualsFoo("bar"));

---OUTPUT---
true
false
false
true

invert should return a new function that effectively inverts the behavior of the provided
function. invert should work for any function, not just the calls shown here. Implement
invert below.

20.) Consider the following JavaScript code and output:

console.log(
 ifNotNull(1 + 1,
 a => ifNotNull(2 + 2,
 b => a + b)));
console.log(
 ifNotNull(7,
 function (e) {
 console.log(e);
 return ifNotNull(null,
 function (f) {
 console.log(f);
 return 8;
 })
 }));

Output:

6
7
null

ifNotNull takes two parameters:

1. Some arbitrary value, which might be null

2. A function. This function is called with the arbitrary value if the value is not null, and the

result of the function is returned. If the value is null, this function isn't called, and null is
returned instead.

Define the ifNotNull function below, so that the output above is produced.

