
COMP 333 Practice Exam #1 (Solutions)

This is representative of the kinds of topics and kind of questions you may be asked on the
midterm. This practice exam, along with assignment 1 and the first two in-class handouts, are
intended to be comprehensive of everything on the exam. That is, I will not ask anything that's
not somehow covered by those sources.

You are permitted to bring two 8.5 x 11 sheets of paper into the exam with you, as long as they
have handwritten notes on them. Both sides of both sheets can be used. To be clear, these
must be entirely handwritten.

Virtual Dispatch - Conceptual Understanding

1.) Name one reason why someone might want to use virtual dispatch.

Non-exhaustive list of possibilities:

• Allows for the same method call to have different behaviors at runtime, which is more flexible

• Allows for abstraction over code behavior. Calling code only needs to know the signature of

a method, and the runtime behavior can be dynamically changed by changing the underlying
object the method is called on.

• Improves code modularity. Each distinct behavior can be isolated from each other behavior,
and behaviors generally don't need to know about each other.

2.) Name one reason why someone might not want to use virtual dispatch.

Non-exhaustive list of possibilities:

• Code can become more bloated. Usually, multiple classes have to be introduced, and

these all have their own boilerplate associated with them.

• Code's behavior can become less explicit, and potentially more difficult to reason about.

For example, an if/else clearly indicates a condition to test and code to execute depending
on the condition. However, a method call may implicitly do something similar.

• It generally has worse performance than an explicit if/else. (Beyond what I'd expect:
behind the scenes, indirect jumps are often needed, and these can easily jump out of
cached instructions. Moreover, it's difficult to predict where an indirect jump will go.)

Virtual Dispatch in Java

3.) Consider the following Java code:

public interface I1 {
 public void doThing();
}
public class C1 implements I1 {
 public void doThing() { System.out.println("c1"); }
}
public class C2 implements I1 {
 public void doThing() { System.out.println("c2"); }
}
public class Main {
 public void makeCall(I1 value) {
 value.doThing();
 }
 public static void main(String[] args) {
 I1 t1 = new C1();
 I1 t2 = new C2();
 makeCall(t1);
 makeCall(t2);
 }
}

What is the output of the main method above?

c1
c2

4.) Consider the following code snippet:

public class Main {
 public static void main(String[] args) {
 Operation op1 = new AddOperation(); // line 3
 Operation op2 = new SubtractOperation(); // line 4
 int res1 = op1.doOp(5, 3); // line 5
 int res2 = op2.doOp(5, 3); // line 6
 System.out.println(res1); // line 7; should print 8
 System.out.pritnln(res2); // line 8; should print 2
 }
}

Define any interfaces and/or classes necessary to make this snippet print 8, followed by 2.

// From lines 3-4, we know that Operation must be a superclass of
// AddOperation and SubtractOperation, based on the types of op1
// and op2. From line 5, we know that Operation must have a doOp
// method, that it must return an int, and that it must take two ints.
// From line 3, 5, and 7, we can infer that AddOperation's doOp must
// be adding its arguments, and similarly from lines 4, 6, and 8, we
// can infer SubtractOperation's doOp must be subtracting its
// arguments.
public interface Operation {
 public int doOp(int first, int second);
}

public class AddOperation implements Operation {
 public int doOp(int first, int second) {
 return first + second;
 }
}

public class SubtractOperation implements Operation {
 public int doOp(int first, int second) {
 return first - second;
 }
}

5.) Consider the following incomplete Java code and output:

public class Incomplete {
 public static void printResult(final Runner r, final int i) {
 boolean result = r.someMethod(i);
 System.out.println(result);
 }

 public static void main(final String[] args) {
 final IsEven even = new IsEven();
 printResult(even, 3); // prints false
 printResult(even, 4); // prints true

 final IsLessThan ltFive = new IsLessThan(5);
 printResult(ltFive, 4); // prints true
 printResult(ltFive, 6); // prints false

 final IsLessThan ltZero = new IsLessThan(0);
 printResult(ltZero, -1); // prints true
 printResult(ltZero, 1); // prints false
 }
}

Define any interfaces and/or classes necessary to make the output in the comments work. You
should not have to modify any code here. Multiple answers are possible.

public interface Runner {
 public boolean someMethod(int i);
}
public class IsEven implements Runner {
 public boolean someMethod(int i) {
 return i % 2 == 0;
 }
}
public class IsLessThan implements Runner {
 public final int value;
 public IsLessThan(final int value) {
 this.value = value;
 }
 public boolean someMethod(int i) {
 return i < value;
 }
}

6.) Consider the following Java code, which simulates a lock which can be either locked or
unlocked. The lock is an immutable data structure, so locking or unlocking returns a new lock
in an appropriate state.

public class Lock {
 private final boolean locked;

 public Lock(final boolean locked) {
 this.locked = locked;
 }

 public Lock unlock() {
 if (locked) {
 System.out.println("lock unlocked");
 return new Lock(false);
 } else {
 System.out.println("lock already unlocked");
 return this;
 }
 }

 public Lock lock() {
 if (!locked) {
 System.out.println("lock locked");
 return new Lock(true);
 } else {
 System.out.println("lock already locked");
 return this;
 }
 }

 public boolean isLocked() {
 return locked;
 }
}

Refactor this code to use virtual dispatch, instead of using if/else. As a hint, you should have a
base class/interface for Lock, and subclasses for locked and unlocked locks. Lock itself
doesn't need a constructor, and you do not need to worry about maintaining compatibility with
existing code that uses Lock. (Continued on to next page)

public interface Lock {
 public Lock unlock();
 public Lock lock();
 public boolean isLocked();
}

public class UnlockedLock implements Lock {
 public Lock unlock() {
 System.out.println("lock already unlocked");
 return this;
 }

 public Lock lock() {
 System.out.println("lock locked");
 return new LockedLock();
 }

 public boolean isLocked() {
 return false;
 }
}

public class LockedLock implements Lock {
 public Lock unlock() {
 System.out.println("lock unlocked");
 return new UnlockedLock();
 }

 public Lock lock() {
 System.out.println("lock already locked");
 return this;
 }

 public boolean isLocked() {
 return true;
 }
}

Types

7.) The Java code below does not compile. Why?

public interface MyInterface {
 public void foo();
}

public class MyClass implements MyInterface {
 public void foo() {}
 public void bar() {}

 public static void main(String[] args) {
 MyInterface a = new MyClass();
 a.bar();
 }
}

The bar method is only available on MyClass, not MyInterface. a is of type MyInterface, so the
bar method is not available, even though the runtime type of a will be MyClass (which does
have bar).

8.) Java supports subtyping. Write a Java code snippet that compiles and uses subtyping.

Object obj = "foo";

("foo" is of type String, and String is a subtype of Object, so values of type String can be
assigned to variables of type Object.)

9.) Name one reason why someone might prefer static typing over dynamic typing.

Possible answers:

• Can help eliminate programming errors at compile time

• Can help in structuring code (types can be a guide for program development)

• Compilers and runtimes can usually optimize code better with type information

10.) Name one reason why someone might prefer dynamic typing over static typing.

Possible answers:

• No need to annotate programs with types, which are a significant amount of code

• More programs are possible, and can fundamentally represent things which cannot be

represented in statically-typed code.

11.) Name one reason why someone might prefer strong typing over weak typing.

Possible answers:

• Strongly-typed languages are more predictable, especially in the presence of bugs and

errors

• Strongly-typed languages tend to emphasize code correctness

12.) Name one reason why someone might prefer weak typing over strong typing.

Possible answers:

• There is usually a performance benefit. For example, there is no need for runtime array

bounds checking.

• Weakly-typed languages tend to be more expressive. (Beyond what I'd expect: C lets you

do more than Java in terms of low-level manipulation, but it's easy to hit undefined
behavior, meaning programs lose all meaning. This can happen even when the code
appears to be working correctly.)

13.) Consider the following code, written in some unknown language:

define myFunc(x, y) {
 return x + y;
}

a = 1
b = 2
myFunc(a, b)

Provide an argument why this language might be statically-typed, OR why it might be
dynamically-typed. Both are possible; the explanation why is the only important part.

Reasoning for dynamic typing: no types are present in the code, consistent with any
dynamically-typed programming language.

Reasoning for static typing: variables x, y, a, and b could all have integer types, and their usage
is always consistent with being integers. The return type of myFunc is similarly an integer. It's
possible that this is type-inferred, where the types are determined at compile-time, but the
programmer never needs to explicitly write the types.

14.) Consider the following code snippet which accesses (what is hopefully) an array at some
unknown position:

hopefullyArray[unknownPosition]

Say what this code will do for each of the following scenarios. Your answers only need to be a
few words, perhaps 2 sentences at most. As a hint, all your answers are likely to be different
for each scenario.

14.a.) Assume this is written in a statically typed, strongly typed language. What sort of checks
(if any) will likely be done at compile time? What sort of checks (if any) will likely be done at
runtime?

Compile time: check if it's an array. Runtime: check if unknownPosition is in bounds.

14.b.) Assume we are in a statically typed, weakly typed language. What sort of checks (if any)
will likely be done at compile time? What sort of checks (if any) will likely be done at runtime?

Compile time: check if it's an array. Runtime: nothing.

14.c.) Assume we are in a dynamically typed, strongly typed language. What sort of checks (if
any) will likely be done at compile time? What sort of checks (if any) will likely be done at
runtime?

Compile time: nothing. Runtime: check if it's an array, and check if unknownPosition is in
bounds.

14.c.) Assume we are in a dynamically typed, weakly typed language. What sort of checks (if
any) will likely be done at compile time? What sort of checks (if any) will likely be done at
runtime?

Compile time: nothing. Runtime: possibly nothing, possibly checking if it's an array, possibly
checking if unknownPosition is in bounds. It's hard to say, because being dynamically
typed implies that some sort of checking is done at runtime, but being weakly typed implies
that not all possible checks are performed.

Higher-Order Functions in JavaScript

15.) Write the output of the following JavaScript code:

function foo(fooParam) {
 return function (innerParam) {
 return fooParam - innerParam;
 }
}

let f1 = foo(7); // fooParam = 7 for f1
let f2 = foo(10); // fooParam = 10 for f2
console.log(f1(2)); // innerParam = 2 for f1; 7 - 2 = 5
console.log(f2(3)); // innerParam = 3 for f2; 10 - 3 = 7
console.log(f1(4)); // innerParam = 4 for f1; 7 - 4 = 3
console.log(f2(5)); // innerParam = 5 for f2; 10 - 5 = 5

5
7
3
5

16.) Write the output of the following JavaScript code:

// Representing lists as higher-order functions.
// The function returns true if the given element exists in the list,
// else false (e.g., contains). The weird part is that the list
// _is_ the function.

function nil() {
 // nil doesn't contain any elements, so it definitely doesn't
 // contain searchKey, either
 return function (searchKey) {
 return false;
 };
}

function cons(head, tail) {
 // cons contains the given element searchKey, if either the
 // head of the list is searchKey, or if the tail of the list
 // contains searchKey
 return function (searchKey) {
 if (searchKey === head) {
 return true;
 } else {
 return tail(searchKey);
 }
 }
}

let emptyList = nil();
let one = cons(1, nil());
let oneTwo = cons(1, cons(2, nil()));

console.log(emptyList(1));
console.log(one(1));
console.log(oneTwo(1));

console.log();

console.log(emptyList(2));
console.log(one(2));
console.log(oneTwo(2));

false
true
true

false
false
true

17.) Consider the following JavaScript code with corresponding output, which calls an unseen
function called mystery:

function output() {
 console.log("foo");
}

let f1 = mystery(output);
f1();
console.log();

let f2 = mystery(f1);
f2();
console.log();

let f3 = mystery(f2);
f3();
console.log();

Output:

foo
foo

foo
foo
foo
foo

foo
foo
foo
foo
foo
foo
foo
foo

Define the mystery function below.

function mystery(f) {
 return function() {
 f();
 f();
 };
}

18.) Write the output of the following JavaScript code:

// returns a function that will bound the output of the wrapped
// function, so the output is never less than min or greater than max
function cap(min, max, wrapped) {
 return function (param) {
 let temp = wrapped(param);
 if (temp < min) {
 return min;
 } else if (temp > max) {
 return max;
 } else {
 return temp;
 }
 };
}

function addTen(param) {
 return param + 10;
}

function subTen(param) {
 return param - 10;
}

let f1 = cap(0, 10, addTen);
let f2 = cap(0, 100, addTen);
let f3 = cap(0, 10, subTen);
let f4 = cap(0, 100, subTen);

console.log(f1(0)); // output: 10
console.log(f1(5)); // output: 10
console.log(); // prints an empty line

console.log(f2(0)); // output: 10
console.log(f2(5)); // output: 15
console.log(); // prints an empty line

console.log(f3(0)); // output: 0
console.log(f3(5)); // output: 0
console.log(); // prints an empty line

console.log(f4(0)); // output: 0
console.log(f4(5)); // output: 0
console.log(); // prints an empty line

19.) Consider the following incomplete JavaScript code and output, which calls an unprovided
function named invert:

function greaterThanFive(input) {
 return input > 5;
}

let notGreaterThanFive = invert(greaterThanFive);
let notEqualsFoo = invert(function (e) { return e === "foo"; });

console.log(notGreaterThanFive(3));
console.log(notGreaterThanFive(7));
console.log(notEqualsFoo("foo"));
console.log(notEqualsFoo("bar"));

---OUTPUT---
true
false
false
true

invert should return a new function that effectively inverts the behavior of the provided
function. invert should work for any function, not just the calls shown here. Implement
invert below.

function invert(f) {
 return function (param) {
 return !f(param);
 }
}

20.) Consider the following JavaScript code and output:

console.log(
 ifNotNull(1 + 1,
 a => ifNotNull(2 + 2,
 b => a + b)));
console.log(
 ifNotNull(7,
 function (e) {
 console.log(e);
 return ifNotNull(null,
 function (f) {
 console.log(f);
 return 8;
 })
 }));

Output:

6
7
null

ifNotNull takes two parameters:

1. Some arbitrary value, which might be null

2. A function. This function is called with the arbitrary value if the value is not null, and the

result of the function is returned. If the value is null, this function isn't called, and null is
returned instead.

Define the ifNotNull function below, so that the output above is produced.

function ifNotNull(value, f) {
 if (value !== null) {
 return f(value);
 } else {
 return null;
 }
}

