COMP 333: Concepts of Programming Languages
Spring 2026

Instructor: Kyle Dewey (kyle.dewey@csun.edu)
Course Web Page: https://kyledewey.github.io/comp333-spring26
Office: JD 4419

Course Description (From the Catalog)

Discussion of issues in the design, implementation and use of high-level programming
languages through a historical framework, including how languages reflect different
design philosophies and use requirements and the technical issues in the design of
main abstraction constructs of programming languages. Other approaches to imperative
or object-oriented programming, functional programming, logical programming and
parallel programming.

Learning Objectives:
Successful students will be able to:
 Understand when to use, and write programs using:
« Execution approaches: compilation, interpretation, and just-in-time (JIT) compilation
« Memory management: manual, reference counting, garbage collection, ownership
and borrowing
- Types: dynamic typing, static typing, strong typing, weak typing, untyped
- Write programs utilizing class-based and prototyped-based inheritance, virtual
dispatch, and higher-order functions
- Write memory diagrams representing the connections between allocated values,
differentiate between stack-allocated and heap-allocated values, and understand
when to use stack vs. heap allocation.

Course Motivation and Goal

Programming languages, like the tools in a typical toolbox, are built to solve problems.
A toolbox may have different sizes and shapes of both hammers and screwdrivers.
Similarly, different programming languages may be closely related to each other, or
potentially very different from each other. The more different a language or tool, the
more different the kind(s) of problem(s) it is designed to solve.

The danger of getting too close to one language or programming paradigm is that your
thinking adapts to fit that language/paradigm. In keeping with the toolbox analogy, if
you have a hammer, then all problems become nails. | may insist on fixing a leaky pipe
with a sledgehammer, but | won't get back my security deposit.

My primary goal with this course is to expand your toolbox, and expose you to
languages which behave very differently from each other. My intention is to warp your
brain a bit, and force you to think in ways you're not used to. This will improve your

mailto:kyle.dewey@csun.edu

problem-solving skills, specifically by allowing you to look at the same problem from
different angles.

A secondary goal is to give you a sense of how different languages are built, and how
they work. We will focus primarily on modern language design and implementation,
though many basic concepts haven't changed much in the 60+ year history of
programming languages.

Textbook and Other Required Class Materials

No textbooks are required. You may wish to look at Programming Language
Pragmatics (Michael Scott) as a reference, though the course does not follow that book.
A computer, be it a laptop or otherwise, is required.

Grading

Your grade is based on the following components:
Assignments 14%
Midterm Exam 1 27%
Midterm Exam 2 27%
Final Exam 32%

There will be a series of coding-based assignments issued throughout the semester,
which cover core parts of the different languages and paradigms you'll use. Not all of
these will be weighted evenly, nor will you always be given the same amount of time for
assignments. Exactly which assignments are assigned depends on how the class
progresses. In general, assignments will be submitted through Canvas (https://
canvas.csun.edu/). In the event that there is a problem with Canvas, you may email
your assignment to me (kyle.dewey@csun.edu) as a last resort.

Plus/minus grading is used, according to the scale below:

If your score is >=... ...you will receive...
92.5 A
89.5 A-
86.5 B+
82.5 B
79.5 B-
76.5 C+
72.5 C

https://canvas.csun.edu
https://canvas.csun.edu
mailto:kyle.dewey@csun.edu

If your score is >=... ...you will receive...
69.5 C-
66.5 D+
62.5 D
59.5 D-
0 F

If you are not present for the final exam and you have not previously made alternative
arrangements with me for the final exam, a grade of WU (unauthorized withdrawal) will
be assigned.

Collaboration for Assignments

All students are required to submit their own individual work. For assignments (and
only assignments), students may discuss among each other, as long as they don’t
digitally share code. That is, you cannot simply email your code to someone else.
However, you may discuss your actual code with someone else, including merely
viewing code. The only stipulation is that if you do discuss with someone else, say
so in your submission. This is not for punitive reasons; this is only so | get a sense of
who is working with who. My intention with this policy is to enable collaborative
learning, as opposed to simply sharing a solution.

Plagiarism and Academic Honesty

While collaboration is allowed on assignments, you are responsible for all of your own
work. You may not take code from online sources and submit it as your own. If you
must take code from online, cite where you took the code from. Worst-case scenario,
you'll receive a 0 for whatever you took, but no further action will be taken. In general,
code taken online which solves more general things (e.g., "how do | iterate through an
array in Java") is more acceptable than code which solves more specific things (e.g.,
"how do | implement a recursive find function over immutable linked lists in JavaScript").
General bits of code only give you pieces of a solution, whereas specific bits of code
often will give you a complete copy/pastable solution. If it's not 100% clear if something
is permitted to be used or not, you can always ask me beforehand.

Chegg is specifically disallowed as an online resource, as it's almost always used as
a repository of complete questions with answers. That is, the questions/answers are
practically always of the specific kind mentioned above.

No discussion whatsoever is allowed during exams, except with the instructor. Any
violations can result in a failing grade for the assignment/exam, or potentially failing the
course for egregious cases. A report will also be made to the Dean of Academic Affairs.
Students who repeatedly violate this policy across multiple courses may be suspended
or even expelled.

LLM Policy

For assignments, LLM-based tools like ChatGPT are discouraged, though not outright
disallowed. It can be easy to over-rely on such tools without realizing it, to the point
where the tool does all the work, with zero understanding of what it produces. If you do
use such tools, you should be aware of the following trap I've seen a lot of students fall
into over the past two years:

. The student gets a solution from an LLM

. The student tests the solution, and observes that all tests pass
The student looks at the code a bit, and decides that it "feels" right. This feeling is
usually based on the relative length, complexity, formatting, and variable naming of
the code, and not on its actual behavior.
The student bombs a high-scoring, closely-related exam question, wherein the
student was asked to write similar code for a similar problem.

. The student realizes they did not actually understand what the LLM produced, and
then needs additional help to try to catch up.

Keep in mind that LLMs fundamentally just generate some text that statistically is likely
to follow whatever the prompt is based on the training set, with no understanding of
what the text says. Any output from an LLM must therefore be verified to ensure it is
correct. This makes them useful for pointing you in some direction if you are lost, but
there is no guarantee that the direction is even relevant.

One course-specific caveat to mention: LLMs will confidently provide misinformation
when it comes to conceptual knowledge about programming languages, as there is a lot
of publicly-available incorrect information when it comes to programming language
design. This is particularly true for conceptual information about types.

Communication

In general, any questions should be made through Canvas. You can also email me,
though I'm usually much faster to respond to Canvas than my general email. Office
hours or talking with me after class are usually the fastest and most detailed way to
communicate with me.

Late Policy / Exam Scheduling

Late assignments will be accepted without penalty if prior arrangements have been
made or there is some sort of legitimate emergency (at my discretion). If you must be
absent from an exam, contact me ASAP to see if alternative accommodations can be
made.

If an assignment is otherwise submitted late, it will be penalized according to the
following scale:

If your assignment is late
by <= this many days...

...it will be deducted by...

1 10%

2 30%

3 60%
4+ 100%

To be clear, assignments which are submitted four or more days beyond the deadline
will not receive credit. The reason for such a harsh late policy is that we will generally
discuss solutions in class shortly after the deadline, and this late policy discourages
people from simply pulling a solution from an in-class discussion.

Class Feedback
| am open to any questions / comments / concerns / complaints you have about the

class. If there is something relevant you want covered, | can push to make this happen.

| operate off of your feedback, and no feedback tells me “everything is ok”.

Class Schedule (Subject to Change):

types introduction, static vs.
dynamic typing

Week Monday Wednesday

1 A9 MK Jr—Day{eampus 1/21: Introduction, motivation
closed)

2 1/26: OOP introduction with Java, | 1/28: Using inheritance to avoid code
using inheritance to avoid code duplication, class-based inheritance,
duplication subtyping, virtual dispatch

3 2/2: Using inheritance to avoid 2/4: Subtyping polymorphism and ad-
code duplication, class-based hoc polymorphism
inheritance, subtyping, virtual
dispatch

4 2/9: Interfaces in Java, reasoning | 2/11: Functional/immutable lists:
about classes/interfaces representation and operations

5 2/16: Functional/immutable lists: | 2/18: Functional/immutable lists:
representation and operations, representation and operations,
assignment 1 discussion assignment 1 discussion

6 2/23: JavaScript introduction, 2/25: Type Concepts: Strong vs. weak

typing, undefined behavior, untyped
languages, type inference

Week Monday Wednesday

7 3/2: Midterm Exam 1 Review 3/4: Midterm Exam 1

8 3/9: Midterm Exam 1 3/11: Higher-Order Functions in
Retrospective JavaScript

9 : . : . . .
.8’ 6 S|.eu|;|g reeesso S8 Springfecess-{ho-insirdction)

10 3/23: Higher-Order Functions in 3/25: Objects in JavaScript
JavaScript

11 3/30: Objects in JavaScript, 4/1: Objects in JavaScript, Prototype-
Prototype-based Inheritance in based Inheritance in JavaScript
JavaScript

12 4/6: Objects in JavaScript, 4/8: Assignment 2 Discussion
Prototype-based Inheritance in
JavaScript

13 4/13: Midterm Exam 2 Review 4/15: Midterm Exam 2

14 4/20: Midterm Exam 2 4/22: Compilation vs. interpretation,
Retrospective Just-in-time compilation

15 4/27: Stack vs. Heap Allocation, 4/29: Reference Counting, Garbage
Manual Memory Management Collection, Ownership

16 5/4: Introduction to Rust; 5/6: Final Exam Review
Ownership and Borrowing in
Rust, Structs in Rust and Memory
Layout

17 5/11: No class; section 16472 5/13: No class; section 15761 Final

Final Exam in JD 1618 from 5:30
-7:30 PM

Exam in Chaparral Hall 5122 from
10:15AM - 12:15 PM

