COMP 333 Lecture 2

Kyle Dewey

Object-Oriented
Programming (OOP)

OOP (Minimal
Definition)

® (Objects contain fields holding data

® Objects can pass messages to each other

OOQOP (Explicit
Methods)

® (Objects contain fields holding data and
methods holding executable procedures

® Objects—canpass-messages-to-each-other
® Obijects can call methods on other objects/
have their methods called on

OOP (As Commonly
Understood)

Objects contain fields holding data and methods holding executable procedures

Obijects can call methods on other objects/have their methods called on

Obijects encapsulate their state using access modifiers

On a call, the correct method may be chosen at runtime, which is a form of polymorphism
Methods can be overridden, allowing for more specific behavior

Abstraction allows for interfaces to contain only immediately relevant information

Classes define a template to make objects from

Classes may inherit fields and methods from other classes

All ideas that were ever good are object-oriented

OOP (As Commonly
Understood)

® Objects contain fields holding data and methods holding executable procedures
® Objects can call methods on other objects/have their methods called on
Obijects encapsulate their state using access modifiers
On a call, the correct method may be chosen at runtime, which is a form of polymorphism

Methods can be overridden, allowing for more specific behavior

Abstraction allows for interfaces to contain only immediately relevant information

® (lasses define a template to make objects from N ot SPeCIﬁ C to OO P

® Classes may inherit fields and methods from other classes

® Allideas that were ever good are object-oriented

OOP (As Commonly
Understood)

® Objects contain fields holding data and methods holding executable procedures

® Objects can call methods on other objects/have their methods called on

® Objects encapsulate their state using access modifiers

® On acall,the correct method may be chosen at runtime, which is a form of polymorphism
® Methods can be overridden, allowing for more specific behavior

® Abstraction allows for interfaces to contain only immediately relevant information

Classes define a template to make objects from

Specific to

class-based
® Allideas that were ever good are object-oriented O O P

Classes may inherit fields and methods from other classes

OOP (As Commonly
Understood)

® Objects contain fields holding data and methods holding executable procedures

® Objects can call methods on other objects/have their methods called on

® On a call, the correct method may be chosen at runtime, w%:!c?islaqg‘}ﬁ: o§HIBB¢%sE1t th 1S
® Methods can be overridden, allowing for more specific behavior

® Abstraction allows for interfaces to contain only immediately relevant information

® (lasses define a template to make objects from

® Classes may inherit fields and methods from other classes

® Allideas that were ever good are object-oriented

OOP (As Commonly
Understood)

® Objects contain fields holding data and methods holding executable procedures

® Objects can call methods on other objects/have their methods called on

® Objects encapsulate their state using access modifiers

® On acall,the correct method may be chosen at runtime, which is a form of polymorphism
® Abstraction allows for interfaces to contain only immediately relevant information

® (lasses define a template to make objects from

e Classes may inherit fields and methods from other classes Ofte Nn cons | d c red

® Allideas that were ever good are object-oriented a bad Idea

OOP (As Commonly
Understood)

® Objects contain fields holding data and methods holding executable procedures

® Objects can call methods on other objects/have their methods called on

® Objects encapsulate their state using access modifiers

® On acall,the correct method may be chosen at runtime, which is a form of polymorphism
® Methods can be overridden, allowing for more specific behavior

® Abstraction allows for interfaces to contain only immediately relevant information

® (lasses define a template to make objects from

® Classes may inherit fields and methods from other classes

OOP was originally

heralded as a
silver bullet

Core Concept:Virtual
Dispatch

Virtual Dispatch

® AKA dynamic dispatch, polymorphism

® The method/code actually called is
determined at runtime

Virtual Dispatch
Example in Java

Virtual Dispatch Use

® Allows for abstracting over computation

® The computation itself becomes a
parameter

Virtual Dispatch Use

® Allows for abstracting over computation

® The computation itself becomes a
parameter

vold foo(SortRoutine s) {

Virtual Dispatch Use

® Allows for abstracting over computation

® The computation itself becomes a
parameter

vold foo(SortRoutine s) {

foo(new InsertionSort())
foo(new MergeSort()):;

Virtual Dispatch vs. i f

® Both conditionally execute code

® 1 f:based on if condition is true/false

® Virtual dispatch: based on the specific
runtime method passed

@ 1f's that are used to select between
different code behaviors are undesirable

e Smalltalk has i fTrue:ifFalse:
method on its boolean type

Exercise:Virtual
Dispatch

Virtual Dispatch in...C?

vold gsort (
vold* base,
size t num,
size t size,
int (*comparator) (const void¥,
const void*)) ;

Prototype-Based
Inheritance

Classes vs. Prototypes

Classes: classes inherit from other classes
Prototypes: objects inherit from other objects
Since objects can be mutated, prototypes allow:

® Dynamically adding or removing inherited
methods

® Dynamically changing hierarchies

Much more flexible than classes

Demo: Prototype-Based
Inheritance in JavaScript

Exercise: Prototype-
Based Inheritance in
JavaScript

