
COMP 333
Summer 2021

Extensions and Protocols in Swift

1.) Use extension to add an add method to Int, which takes another Int and
returns the sum of the two Ints. An example call is below:

5.add(6) // returns 11

2.) Define a protocol named Equality, which defines an equals method. equals
takes something of the same type it is called on, and returns a Bool indicating whether
the two values equal each other or not. As a hint, the type Self refers to whatever type
it was called on. Example calls are below (assuming an extension is defined
elsewhere adding equals to Int):

5.equals(5) // returns true
5.equals(6) // returns false
5.equals("foo") // compile-time error; Int and String are not
 // not the same type

3.) Use extension to say that Int satisfies the Equality protocol you defined
above. This adds the equals method to Int. As a hint, == is used to test if two Ints
are equal or not.

4.) Consider the following enum definition:

indirect enum List<A> {
 case cons(A, List<A>)
 case empty
}

Define an extension which will add an evens method specifically to List<Int>,
where evens returns a list of all the even numbers in the input list. As a hint, this works
in a manner similar to filter. Example calls are below:

let list1 = List.cons(2, List.cons(3, List.cons(4, List.empty)))
let list2 = List.cons("foo", List.cons("bar", List.empty))
list1.evens() // returns List.cons(2, List.cons(4, List.empty))
list2.evens() // compile-time error; evens() is only available
 // on List<Int> and list2 is of type List<String>

