
COMP 333 Final Practice Exam 

The final exam is cumulative.  This practice exam, in addition to the prior practice exams, 
assignments, and in-class handouts, is intended to be a comprehensive guide for studying.  
This practice exam only focuses on material since the last exam.


Language Terminology


1.) In regards to memory management, Swift and Python (specifically cpython) both use 
reference counting, whereas Java and JavaScript both use garbage collection.


1.a.) In 1-3 sentences, in your own words, explain how garbage collection reclaims memory.  
Your description doesn't have to be detailed enough to implement a garbage collector, only 
detailed enough to get the gist of when memory would be reclaimed.


1.b.) In 1-3 sentences, in your own words, explain how reference counting reclaims memory.  
Your description doesn't have to be detailed enough to implement reference counting, only 
detailed enough to get the gist of when memory would be reclaimed.


1.c.) Name one advantage of reference counting over garbage collection.


1.d.) Name one advantage of garbage collection over reference counting.




2.) In 1-3 sentences, explain the difference between compilation and interpretation.  Your 
answer does not need to be detailed enough to implement a compiler or interpreter.


3.) The Java Virtual Machine (JVM) is implemented as an interpreter over Java bytecode.  
Similarly, most JavaScript implementations are implemented as interpreters.  However, most 
Java and JavaScript implementations support just-in-time (JIT) compilation.


3.a.) In 1-3 sentences, explain what JIT compilation does, in the context of an interpreter.  Your 
answer doesn't need to be detailed enough to implement a JIT compiler.


3.b.) JIT compilers can sometimes generate faster code than traditional compilers.  Why? 


4.) Swift, Scala, and Haskell all support type inference.  In 1-3 sentences, explain what type 
inference is, and how it relates to statically-typed and dynamically-typed languages.  You don't 
have to provide enough detail to implement a type inferencer.




5.) C only has support for first-order functions, whereas JavaScript and Swift both have 
support for higher-order functions.


5.a.) In 1-3 sentences, explain what higher-order functions are.  You don't have to provide 
enough detail to explain how to use them.


5.b.) Unlike first-order functions, higher-order functions may require memory to be dynamically 
allocated at runtime.  Why?


5.c.) Write a JavaScript code snippet that uses higher-order functions and would require 
memory to be dynamically allocated at runtime.


 




6.) Consider the following code snippet, which is written in some unknown programming 
language:


DefineFunction foo(x, y):

  DefineVariable temp = x dividedBy y

  return temp


foo(3, 4)            // first call to foo

foo("alpha", "beta") // second call to foo


6.a.) Assume this language is statically-typed.  Does this language probably have type 
inference?  Why or why not?


6.b.) Assume this language is statically-typed.  Does this code probably compile?  Why or why 
not?


6.c.) Assume this language is dynamically-typed.  Does this code probably compile?  Why or 
why not?




Swift 
7.) Write the body of the following function, or say if it's impossible to implement.  If it's 
impossible to implement, explain why.


func combine<A, B>(a: A, b: B) -> (A, B) {


}


8.) Write the body of the following function, or say if it's impossible to implement.  If it's 
impossible to implement, explain why.


func combine2<A, B>(a: A) -> ((B) -> (A, B)) {


}


9.) Write the body of the following function, or say if it's impossible to implement.  If it's 
impossible to implement, explain why.


func combine3<A, B>(tup: (A, B)) -> A {


}


10.) Write the body of the following function, or say if it's impossible to implement.  If it's 
impossible to implement, explain why.


func combine4<A, B>(a: A, f: (A) -> B) -> (A, B) {


}




11.) Consider the following enum definition:


enum Something<A, B, C> {

  case alpha(A)

  case beta(B)

  case gamma(C)

}


11.a.) Write the body of the following function, or say if it's impossible to implement.  If it's 
impossible to implement, explain why.


func combine5<A, B, C>(s: Something<A, B, C>) -> (A, B, C) {


}


11.b.) Write the body of the following function, or say if it's impossible to implement.  If it's 
impossible to implement, explain why.


func combine6<A>(s: Something<A, A, A>) -> A {


}


12.) Write the body of the following function, or say if it's impossible to implement.  If it's 
impossible to implement, explain why.


func combine7<A, B>(f: (A) -> B, b: B) -> A {


}



