
COMP 333
Summer 2024

Prototype-based Inheritance and Memory Diagrams

1.a.) Consider the JavaScript code below:

function Base() {}
function Sub1() {}
function Sub2() {}

// <<some additional code>>

let base = new Base();
let sub1 = new Sub1();
let sub2 = new Sub2();
base.method(); // prints "base"
sub1.method(); // prints "sub1"
sub2.method(); // prints "base"
console.log(base instanceof Base); // prints "true"
console.log(sub1 instanceof Base); // prints "true"
console.log(sub2 instanceof Base); // prints "true"

Code is elided where <<some additional code>> is. Write what this elided code
must be below.

2.a.) Consider the JavaScript code below. What is the output of this code?

function AddThis(x) { this.x = x; }
AddThis.prototype.add = function (y) { return this.x + y; }

let withOne = new AddThis(1);
let withFive = new AddThis(5);
console.log(withOne.add(1));
console.log(withFive.add(2));

2.b.) Write a memory diagram below representing how AddThis, withOne, and
withFive all look in memory. As a hint, be sure to include the appropriate prototype
and __proto__ fields.

2.c.) Write JavaScript code which will effectively add a sub method to all instances of
AddThis, where sub should subtract this.x from its parameter and return the result.
As a hint, you'll need to add it to AddThis' prototype.

2.d.) Write an updated memory diagram below, reflecting the changes that 2.c. caused
in the diagram from 2.b.

2.e.) Write JavaScript code which will add a mul method to only newly-created
instances of AddThis, where mul should multiply this.x with its parameter and return
the result. Newly-created AddThis instances should have the same add and sub
methods as before, without repeating their definitions. Existing instances of AddThis
should not have a mul method. As a hint, you should not modify AddThis' prototype.

2.f.) Write the updated memory diagram below, reflecting 2.e's changes on 2.d.

