COMP 410 Lecture |

Kyle Dewey

About Me

® | research automated testing techniques
and their intersection with CS education

® My dissertation used logic programming
extensively

® This is my second time teaching this class

About this Class

® See something wrong! Want something
improved? Email me about it!
(kyle.dewey@csun.edu)

® | generally operate based on feedback

mailto:kyle.dewey@csun.edu

Bad Feedback

® This guy sucks.
® This class is boring.

® This material is useless.

-1 can’t do anything in response to this

Good Feedback

This guy sucks, | can’t read his writing.
This class is boring, it’s way too slow.

This material is useless, | don’t see how it
relates to anything in reality.

| can’t fix anything if | don’t know what'’s
wrong

-1 can actually do something about this!

What is Logic
Programming?

-Major programming paradigm - a way of thinking about problems

-Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to solve it. This is called declarative programming.

-For example: it’s generally easier to say what constraints must hold for a valid Sudoku solution, as opposed to directly finding a valid Sudoku solution.
-Somewhat related to functional programming - we generally lack mutable state

-Unlike any other major paradigm, the distinction between inputs and outputs is intentionally blurred. You can take advantage of this.

“__n

-Basis in formal logic. It’s the only major paradigm where “=" has the same meaning as it does in math.

What is Logic
Programming?

® What, not how

-Major programming paradigm - a way of thinking about problems

-Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to solve it. This is called declarative programming.

-For example: it’s generally easier to say what constraints must hold for a valid Sudoku solution, as opposed to directly finding a valid Sudoku solution.
-Somewhat related to functional programming - we generally lack mutable state

-Unlike any other major paradigm, the distinction between inputs and outputs is intentionally blurred. You can take advantage of this.

“__n

-Basis in formal logic. It’s the only major paradigm where “=" has the same meaning as it does in math.

What is Logic
Programming?

® What, not ho

® No mutable state

-Major programming paradigm - a way of thinking about problems

-Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to solve it. This is called declarative programming.

-For example: it’s generally easier to say what constraints must hold for a valid Sudoku solution, as opposed to directly finding a valid Sudoku solution.
-Somewhat related to functional programming - we generally lack mutable state

-Unlike any other major paradigm, the distinction between inputs and outputs is intentionally blurred. You can take advantage of this.

“__n

-Basis in formal logic. It’s the only major paradigm where “=" has the same meaning as it does in math.

What is Logic
Programming?

® What, not ho

® No mutable state
® Basis in formal logic

® = means =

-Major programming paradigm - a way of thinking about problems

-Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to solve it. This is called declarative programming.

-For example: it’s generally easier to say what constraints must hold for a valid Sudoku solution, as opposed to directly finding a valid Sudoku solution.
-Somewhat related to functional programming - we generally lack mutable state

-Unlike any other major paradigm, the distinction between inputs and outputs is intentionally blurred. You can take advantage of this.

-Basis in formal logic. It’s the only major paradigm where “=" has the same meaning as it does in math.

What is Logic
Programming?

® What, not ho

® No mutable state
® Basis in formal logic
® = means =

® line between input/output is blurry

-Major programming paradigm - a way of thinking about problems

-Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to solve it. This is called declarative programming.

-For example: it’s generally easier to say what constraints must hold for a valid Sudoku solution, as opposed to directly finding a valid Sudoku solution.
-Somewhat related to functional programming - we generally lack mutable state

-Unlike any other major paradigm, the distinction between inputs and outputs is intentionally blurred. You can take advantage of this.

-Basis in formal logic. It’s the only major paradigm where “=" has the same meaning as it does in math.

What is this Course?

-Strong emphasis on programming and using logic programming languages

-1 want you to think in this paradigm, not merely force Java into it

-The ideas can be applied in non-logical languages, and your first assignment will force you to write in a logical way outside of a logic programming
language (though you won'’t realize that’s what you’re doing yet)

-Little bit of theory

What is this Course?

® Programming, programming, programming

-Strong emphasis on programming and using logic programming languages

-1 want you to think in this paradigm, not merely force Java into it

-The ideas can be applied in non-logical languages, and your first assignment will force you to write in a logical way outside of a logic programming
language (though you won'’t realize that’s what you’re doing yet)

-Little bit of theory

What is this Course?

® Programming, programming, programming

® Thinking in a logic programming way

-Strong emphasis on programming and using logic programming languages

-1 want you to think in this paradigm, not merely force Java into it

-The ideas can be applied in non-logical languages, and your first assignment will force you to write in a logical way outside of a logic programming
language (though you won'’t realize that’s what you’re doing yet)

-Little bit of theory

What is this Course?

® Programming, programming, programming
® Thinking in a logic programming way

® Applying logic programming without a logic
programming language

-Strong emphasis on programming and using logic programming languages
-1 want you to think in this paradigm, not merely force Java into it
-The ideas can be applied in non-logical languages, and your first assignment will force you to write in a logical way outside of a logic programming

language (though you won’t realize that’s what you’re doing yet)
-Little bit of theory

What this course isn’t

What this course isn’t

® Artificial intelligence

-"Artificial intelligence” used to refer to search techniques, which is relevant to logic programming. Now the term largely refers to machine learning. What
it means is a moving target.

-Machine learning (we won’t do any sort of statistics)

-You can spend a career on the theory behind this stuff. | know some, but it’s not my speciality.

What this course isn’t

® Artificial intelligence

® Machine learning

-"Artificial intelligence” used to refer to search techniques, which is relevant to logic programming. Now the term largely refers to machine learning. What
it means is a moving target.

-Machine learning (we won’t do any sort of statistics)

-You can spend a career on the theory behind this stuff. | know some, but it’s not my speciality.

What this course isn’t

® Artificial intelligence
® Machine learning

® Theoretical

-"Artificial intelligence” used to refer to search techniques, which is relevant to logic programming. Now the term largely refers to machine learning. What
it means is a moving target.

-Machine learning (we won’t do any sort of statistics)

-You can spend a career on the theory behind this stuff. | know some, but it’s not my speciality.

Syllabus

Outline

® Abstract Syntax Trees and evaluation

® SAT and Semantic Tableau

Abstract Syntax Trees
and
Evaluation

Abstract Syntax Tree

® Abbreviation:AST

® Unambiguous tree-based representation of
a sentence in a language

® Very commonly used in compilers,
interpreters, and related software

-Generally we work with ASTs instead of Strings or any other code representation

(L + 2) - 3 * 4

-Key parts: we need parentheses to direct that 1 + 2 happens first. We know that the 3 * 4 should happen after the part in parentheses from PEMDAS rules

(1L + 2)

3 * 4

-Lowest priority thing ends up in the top of the tree

(L + 2) - 3 * 4

-Next level of priority

-Next level of priority

(L + 2)

- 3 * 4

Exercise: First Side of
AST/Evaluation Sheet

Evaluation

-Key point: bubble-up values from the leaves
-This can be implemented in code via a recursive function starting from the root (code in a bit later)

-We start evaluation from the root...

Evaluation

Evaluation

-In order to evaluate the root, we need to evaluate the left subtree of the root (+)

Evaluation

-ln order to evaluate +, we need to evaluate the left subtree (as with the root)

Evaluation

-For arithmetic, leaves are simply numbers
-Evaluating a leaf returns the number held within

Evaluation

-The left subtree of + has now been evaluated

-Now + needs the value of the right subtree

Evaluation

-The left subtree of + has now been evaluated

-Now + needs the value of the right subtree

Evaluation

-As before, leaves just return the value held within

Evaluation

-Subtrees of + are now taken care of
-Now + has two values that it needs to work with...

-+ performs the actual addition

Evaluation

Evaluation

-Now + is taken care of
-Going back to -, - now has the value of the left subtree, and it needs the value of the right subtree

Evaluation

-Now we’re on *, which needs the value of the left subtree...

Evaluation

-Now we’re on *, which needs the value of the left subtree...

Evaluation

-Leaves again return the values held within...

Evaluation

-Left subtree done; * now needs the value of the right subtree...

Evaluation

-Left subtree done; * now needs the value of the right subtree...

-Leaf returns value held within

Evaluation

Evaluation

-Leaf is done. * now has both operands it needs...

Evaluation

-* performs the multiplication and returns the value

Evaluation

-The root - node now has both operands...

Evaluation

-9

—...and it returns the result of the subtraction

Exercise: Second Side of
AST/Evaluation Sheet

Evaluator Example:
arithmetic evaluator.py

-Complete example online; we’ll live-code this in class

SAT and Semantic
Tableau

SAT Background

SAT

® Short for the Boolean satisfiability problem

® Given a Boolean formula with variables, is
there an assignment of true/false to the
variables which makes the formula true!?

SAT

® Short for the Boolean satisfiability problem

® Given a Boolean formula with variables, is
there an assignment of true/false to the
variables which makes the formula true!?

(x V ay) A (=X V z)

SAT

® Short for the Boolean satisfiability problem

® Given a Boolean formula with variables, is
there an assignment of true/false to the
variables which makes the formula true!?

(X Vv —|Y) N\ (—|X Vv Z)
Yes: x is true, z is true

SAT

® Short for the Boolean satisfiability problem

® Given a Boolean formula with variables, is
there an assignment of true/false to the
variables which makes the formula true!?

(X Vv —|Y) N\ (—|X Vv Z)
Yes: x is true, z is true

(x N —X)

SAT

® Short for the Boolean satisfiability problem

® Given a Boolean formula with variables, is
there an assignment of true/false to the
variables which makes the formula true!?

(X Vv —|Y) N\ (—|X Vv Z)
Yes: x is true, z is true

(x N —X)

No

Relevance

Widespread usage in hardware and software verification

-Verification as in _proving_ the system does what we intend
-Much stronger guarantees than testing
-Testing can prove the existence of a bug (a failed test), whereas verification proves the absence of bugs (relative to the theorems proven)

Relevance

Widespread usage in hardware and software verification

-Circuits can be represented as Boolean formulas

-Can basically phrase proofs as Circuit A BadThing. If unsatisfiable, then BadThing cannot occur. If satisfiable, then the solution gives the circumstance
under which BadThing occurs.

-Many details omitted (entire careers are based on this stuff)

Relevance

Widespread usage in hardware and software verification

-(Likely) used by AirBus to verify that flight control software does the right thing
-Lots of proprietary details so it’s not 100% clear how this verification works, but SAT is still relevant to the problem

Relevance

Widespread usage in hardware and software verification

-Nasa uses software verification for a variety of tasks; SAT is relevant, though other techniques are used, too

Relevance to Logic
Programming

® Methods for solving SAT can be used to
execute logic programs

® | ogic programming can be phrased as SAT
with some additional stuff

Semantic Tableau

® One method for solving SAT instances

® Basic idea: iterate over the formula
® Maintain subformulas that must be true
® | earn which variables must be true/false

® Stop at conflicts (unsatisfiable), or when
no subformulas remain (have solution)

-There are many methods to this

Positive Literals

-As in, the input formula is simply “a”

Positive Literals

-One subformula must be true: a
-Initially, we don’t know what any variables must map to

Positive Literals

-For formula “a” to be true, it must be the case that a is true

Positive Literals

-No subformulas remain, so we are done. The satisfying solution is that a must be true.

Negative Literals

-As in, the input formula is simply “=a”

Negative Literals

-One subformula must be true: —a
-Initially, we don’t know what any variables must map to

Negative Literals

-For subformula “—a” to be true, it must be the case that a is false

Negative Literals

-No subformulas remain, so we are done. The satisfying solution is that “a” must be false.

Logical And

Logical And

a N Db

[a A D]
{}

-Initially, one subformula must be true:a A b
-Initially, we don’t know what any variable must map to

Logical And

-For a A b to be true, subformulas a and b must both be true

Logical And

-From the positive literal case, for formula a to be true, variable a must be true

Logical And

-From the positive literal case, for formula b to be true, variable b must be true

Logical And

-No subformulas remain, so we are done with the solution that both a and b must be true

Logical And

-Alternative example, showing a conflict

Logical And

a N —a

[a A —a]

{}

Logical And

Logical And

-Now we have a problem: for formula —a to be true, it must be the case that variable a is false
-We’ve already recorded that variable a must be true, which is the opposite of what we expect.
-As such, we have a conflict - this formula is unsatisfiable

Exercise: First Side of
SAT Sheet

Logical Or

Logical Or

a V —a

[a V —a]

{}

Logical Or

-World splits on or: in one world we pick the left subformula, and in another we pick the right

Logical Or

-World splits on or: in one world we pick the left subformula, and in another we pick the right

Logical Or

-World splits on or: in one world we pick the left subformula, and in another we pick the right

Logical Or

-World splits on or: in one world we pick the left subformula, and in another we pick the right

Logical Or

-World splits on or: in one world we pick the left subformula, and in another we pick the right

Examples

Example |:
(_Ib V a) N D

(_Ib Vv a)

AN

b

Example 2:
(x V. y) AN (-x V 2z)

(X \V/ ﬁy)

AN

(—|X Vv Z)

Exercise: Second Side of
SAT Sheet

