COMP 410 Lecture 1

Kyle Dewey

About Me

- I research automated testing techniques and their intersection with CS education
- My dissertation used logic programming extensively
- This is my second time teaching this class

About this Class

- See something wrong? Want something improved? Email me about it! (kyle.dewey@csun.edu)
- I generally operate based on feedback

Bad Feedback

- This guy sucks.
- This class is boring.
- This material is useless.

-I can't do anything in response to this

Good Feedback

- This guy sucks, I can't read his writing.
- This class is boring, it's way too slow.
- This material is useless, I don't see how it relates to anything in reality.
- I can't fix anything if I don't know what's wrong

-I can actually do something about this!

- -Major programming paradigm a way of thinking about problems
- -Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to solve it. This is called declarative programming.
- -For example: it's generally easier to say what constraints must hold for a valid Sudoku solution, as opposed to directly finding a valid Sudoku solution.
- -Somewhat related to functional programming we generally lack mutable state
- -Unlike any other major paradigm, the distinction between inputs and outputs is intentionally blurred. You can take advantage of this.
- -Basis in formal logic. It's the only major paradigm where "=" has the same meaning as it does in math.

• What, not how

- -Major programming paradigm a way of thinking about problems
- -Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to solve it. This is called declarative programming.
- -For example: it's generally easier to say what constraints must hold for a valid Sudoku solution, as opposed to directly finding a valid Sudoku solution.
- -Somewhat related to functional programming we generally lack mutable state
- -Unlike any other major paradigm, the distinction between inputs and outputs is intentionally blurred. You can take advantage of this.
- -Basis in formal logic. It's the only major paradigm where "=" has the same meaning as it does in math.

- What, not how
- No mutable state

- -Major programming paradigm a way of thinking about problems
- -Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to solve it. This is called declarative programming.
- -For example: it's generally easier to say what constraints must hold for a valid Sudoku solution, as opposed to directly finding a valid Sudoku solution.
- -Somewhat related to functional programming we generally lack mutable state
- -Unlike any other major paradigm, the distinction between inputs and outputs is intentionally blurred. You can take advantage of this.
- -Basis in formal logic. It's the only major paradigm where "=" has the same meaning as it does in math.

- What, not how
- No mutable state
- Basis in formal logic
 - = means =

- -Major programming paradigm a way of thinking about problems
- -Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to solve it. This is called declarative programming.
- -For example: it's generally easier to say what constraints must hold for a valid Sudoku solution, as opposed to directly finding a valid Sudoku solution.
- -Somewhat related to functional programming we generally lack mutable state
- -Unlike any other major paradigm, the distinction between inputs and outputs is intentionally blurred. You can take advantage of this.
- -Basis in formal logic. It's the only major paradigm where "=" has the same meaning as it does in math.

- What, not how
- No mutable state
- Basis in formal logic
 - = means =
- Line between input/output is blurry

- -Major programming paradigm a way of thinking about problems
- -Emphases thinking about exactly _what_ the problem is, as opposed to exactly _how_ to solve it. This is called declarative programming.
- -For example: it's generally easier to say what constraints must hold for a valid Sudoku solution, as opposed to directly finding a valid Sudoku solution.
- -Somewhat related to functional programming we generally lack mutable state
- -Unlike any other major paradigm, the distinction between inputs and outputs is intentionally blurred. You can take advantage of this.
- -Basis in formal logic. It's the only major paradigm where "=" has the same meaning as it does in math.

- -Strong emphasis on programming and using logic programming languages
- -I want you to think in this paradigm, not merely force Java into it
- -The ideas can be applied in non-logical languages, and your first assignment will force you to write in a logical way outside of a logic programming language (though you won't realize that's what you're doing yet)
- -Little bit of theory

• Programming, programming

- -Strong emphasis on programming and using logic programming languages
- -I want you to think in this paradigm, not merely force Java into it
- -The ideas can be applied in non-logical languages, and your first assignment will force you to write in a logical way outside of a logic programming language (though you won't realize that's what you're doing yet)
- -Little bit of theory

- Programming, programming
- Thinking in a logic programming way

- -Strong emphasis on programming and using logic programming languages
- -I want you to think in this paradigm, not merely force Java into it
- -The ideas can be applied in non-logical languages, and your first assignment will force you to write in a logical way outside of a logic programming language (though you won't realize that's what you're doing yet)
- -Little bit of theory

- Programming, programming
- Thinking in a logic programming way
- Applying logic programming without a logic programming language

- -Strong emphasis on programming and using logic programming languages
- -I want you to think in this paradigm, not merely force Java into it
- -The ideas can be applied in non-logical languages, and your first assignment will force you to write in a logical way outside of a logic programming language (though you won't realize that's what you're doing yet)
- -Little bit of theory

What this course isn't

Artificial intelligence

^{-&}quot;Artificial intelligence" used to refer to search techniques, which is relevant to logic programming. Now the term largely refers to machine learning. What it means is a moving target.

⁻Machine learning (we won't do any sort of statistics)

⁻You can spend a career on the theory behind this stuff. I know some, but it's not my speciality.

What this course isn't

- Artificial intelligence
- Machine learning

^{-&}quot;Artificial intelligence" used to refer to search techniques, which is relevant to logic programming. Now the term largely refers to machine learning. What it means is a moving target.

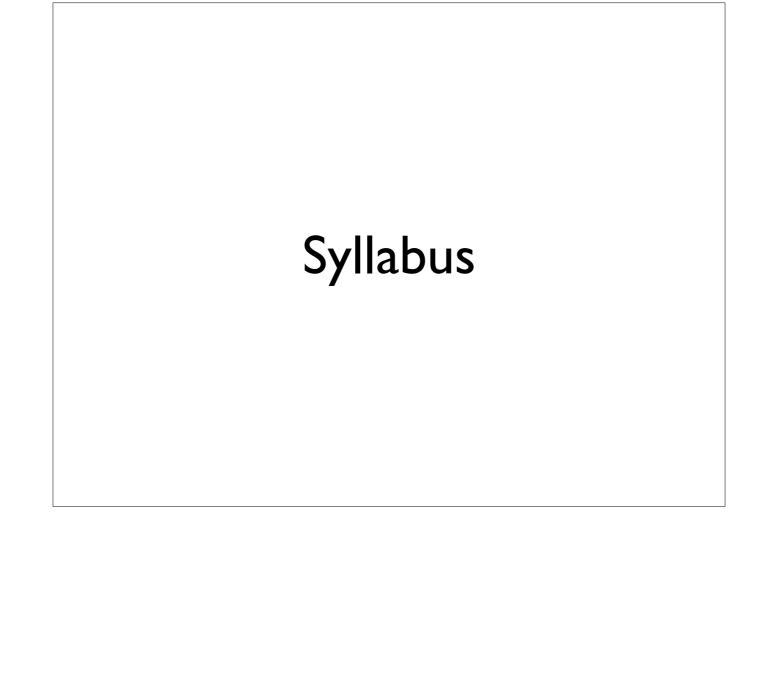
⁻Machine learning (we won't do any sort of statistics)

⁻You can spend a career on the theory behind this stuff. I know some, but it's not my speciality.

What this course isn't

- Artificial intelligence
- Machine learning
- Theoretical

- -"Artificial intelligence" used to refer to search techniques, which is relevant to logic programming. Now the term largely refers to machine learning. What it means is a moving target.
- -Machine learning (we won't do any sort of statistics)
- -You can spend a career on the theory behind this stuff. I know some, but it's not my speciality.



Outline

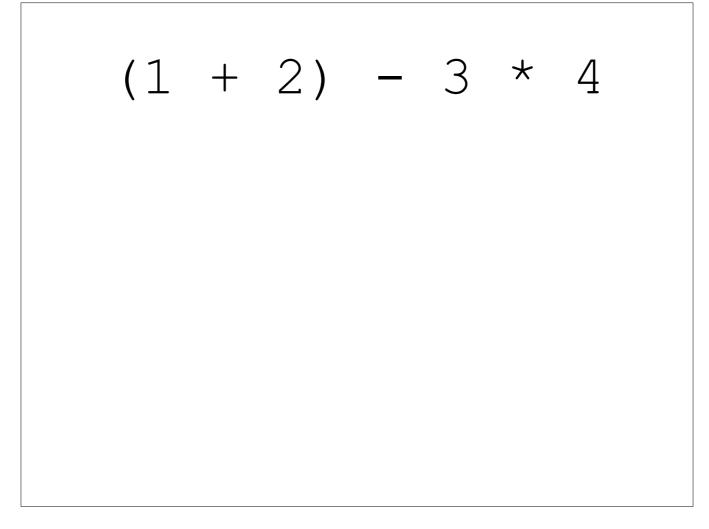
- Abstract Syntax Trees and evaluation
- SAT and Semantic Tableau

Abstract Syntax Trees and Evaluation

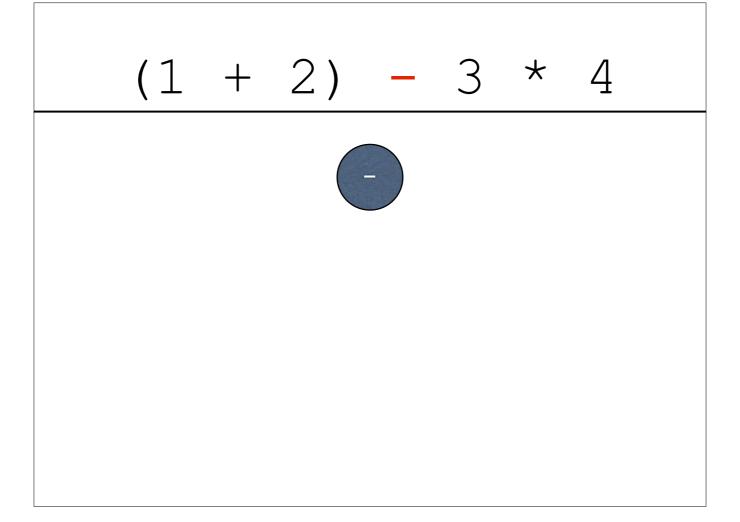
Abstract Syntax Tree

- Abbreviation: AST
- Unambiguous tree-based representation of a sentence in a language
- Very commonly used in compilers, interpreters, and related software

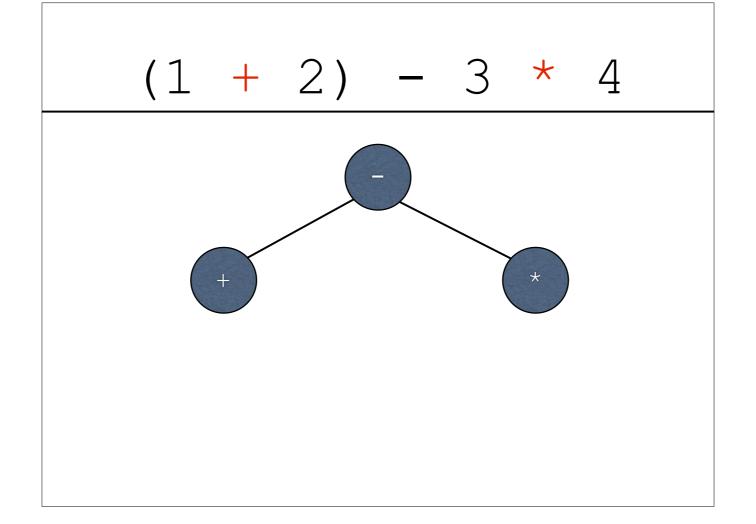
-Generally we work with ASTs instead of Strings or any other code representation



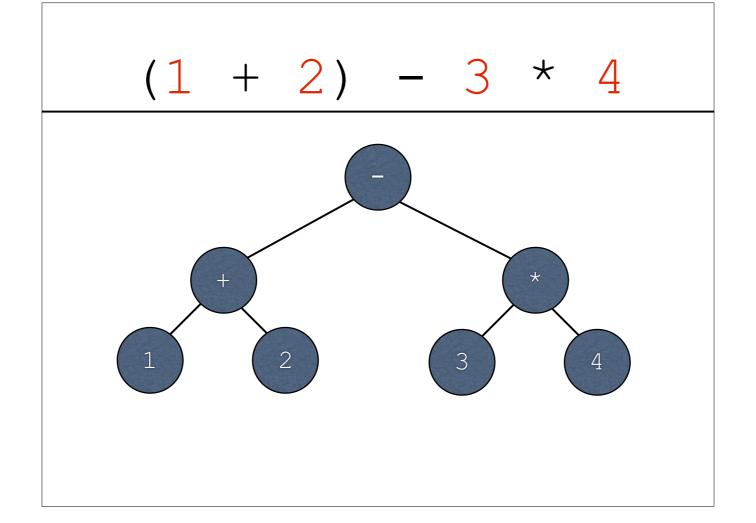
⁻Key parts: we need parentheses to direct that 1+2 happens first. We know that the 3*4 should happen after the part in parentheses from PEMDAS rules



-Lowest priority thing ends up in the top of the tree

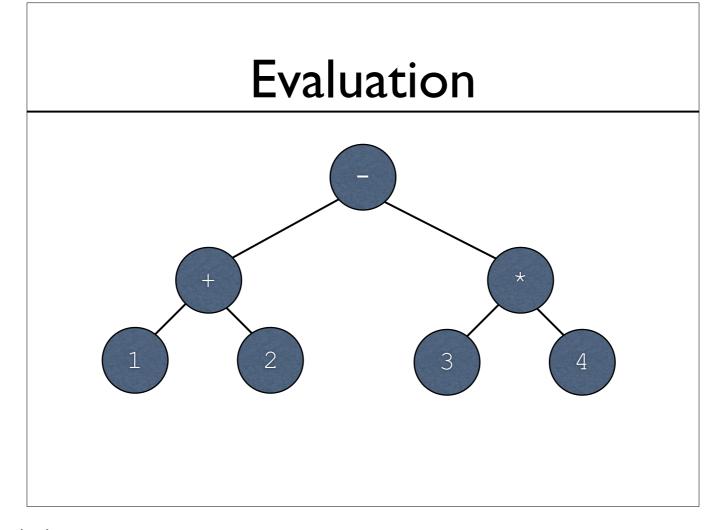


-Next level of priority

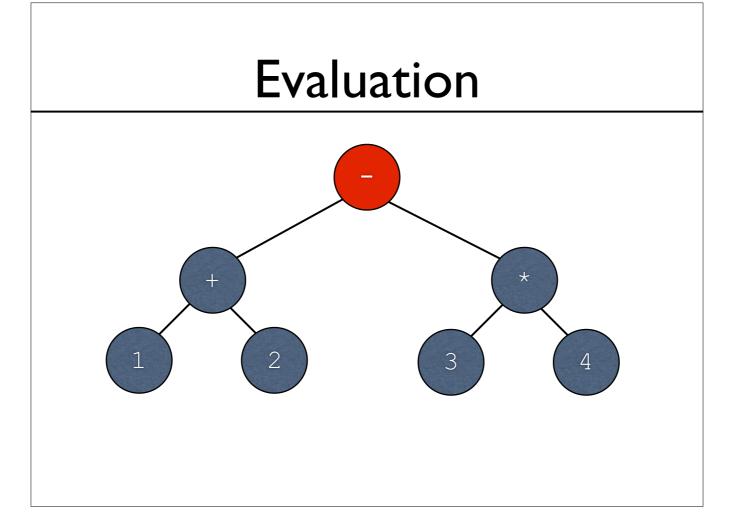


-Next level of priority

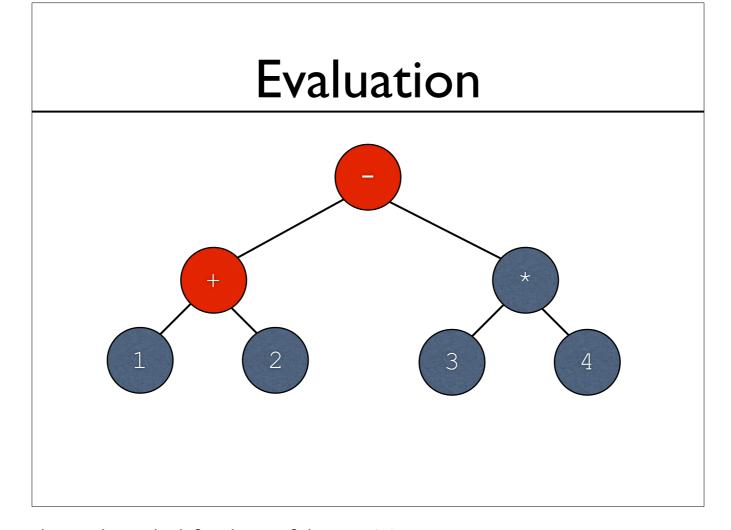
Exercise: First Side of AST/Evaluation Sheet



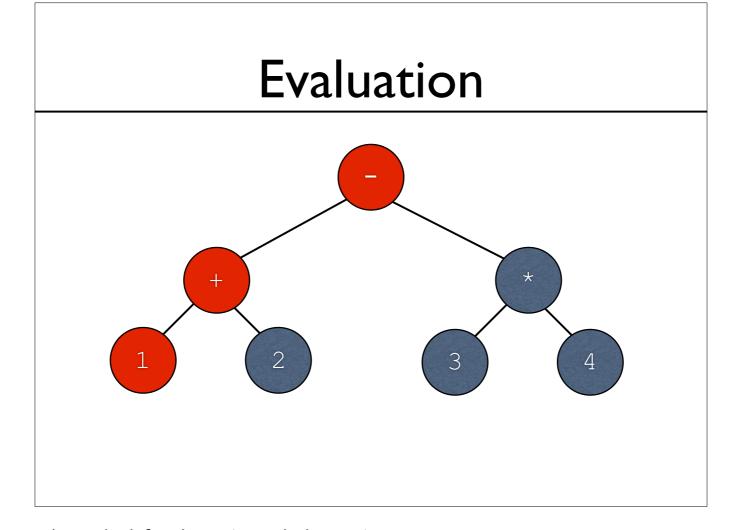
- -Key point: bubble-up values from the leaves -This can be implemented in code via a recursive function starting from the root (code in a bit later)



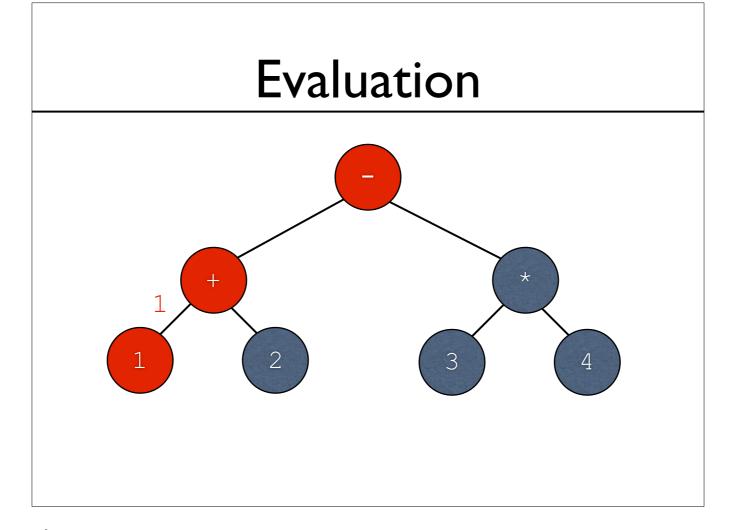
-We start evaluation from the root...



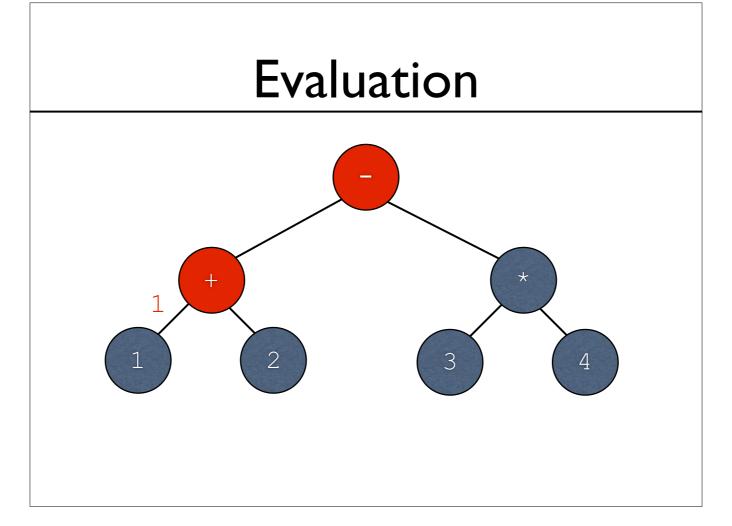
-In order to evaluate the root, we need to evaluate the left subtree of the root (+)



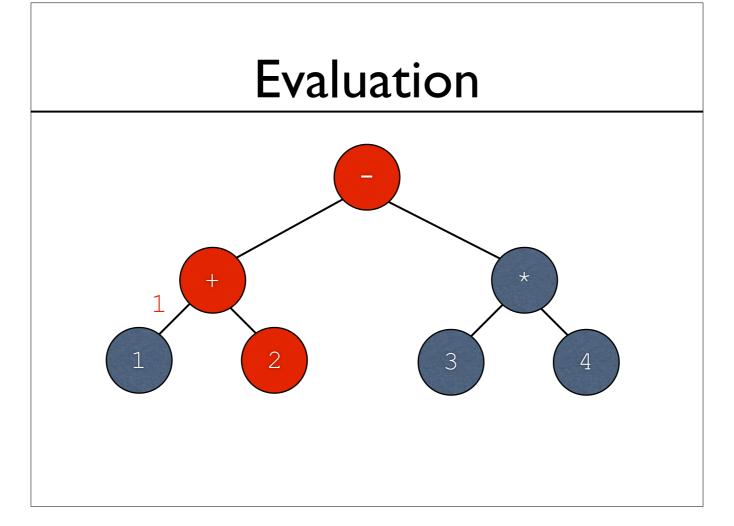
-In order to evaluate +, we need to evaluate the left subtree (as with the root)



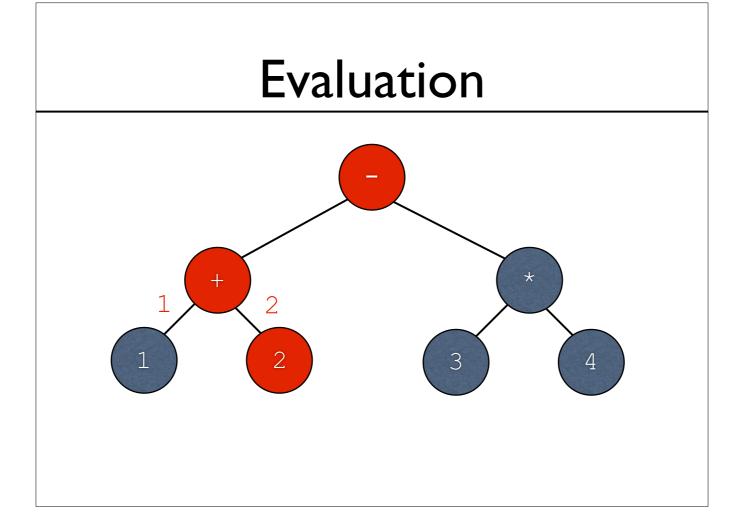
- -For arithmetic, leaves are simply numbers -Evaluating a leaf returns the number held within



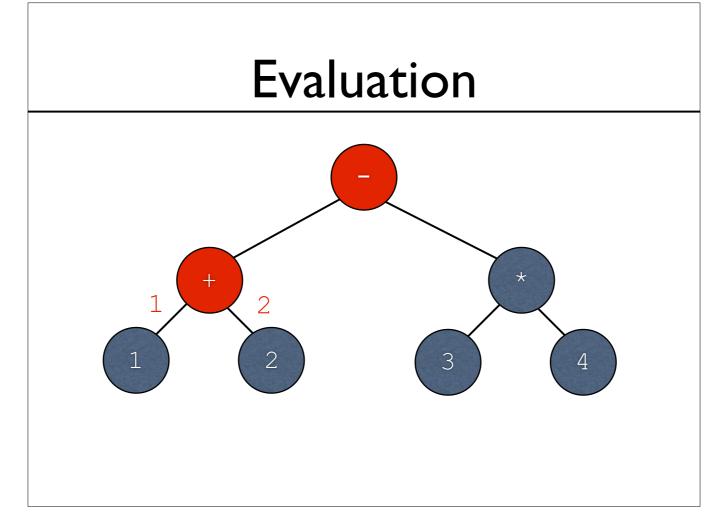
- -The left subtree of + has now been evaluated
- -Now + needs the value of the right subtree



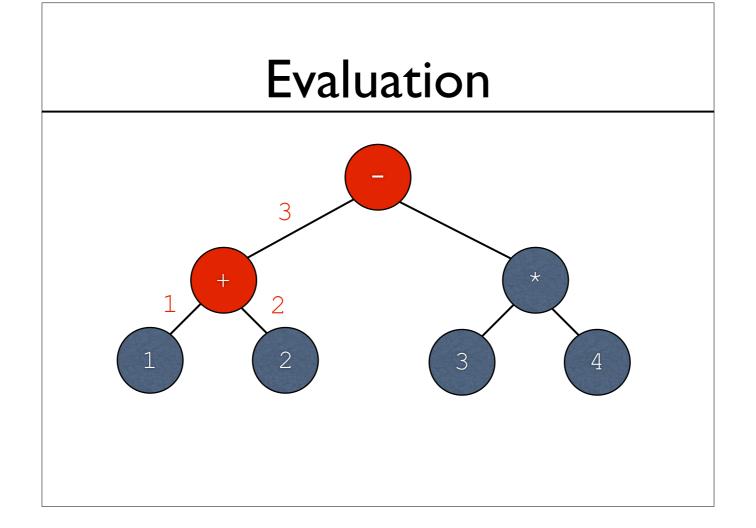
- -The left subtree of + has now been evaluated
- -Now + needs the value of the right subtree



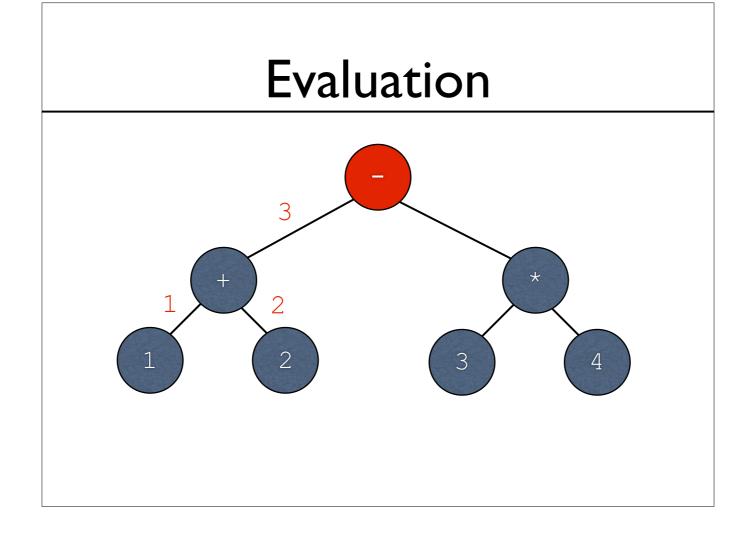
-As before, leaves just return the value held within



- -Subtrees of + are now taken care of
- -Now + has two values that it needs to work with...

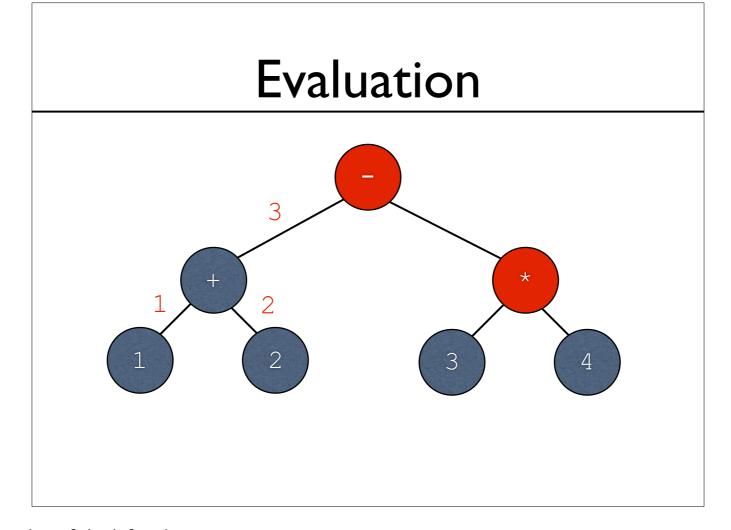


-+ performs the actual addition

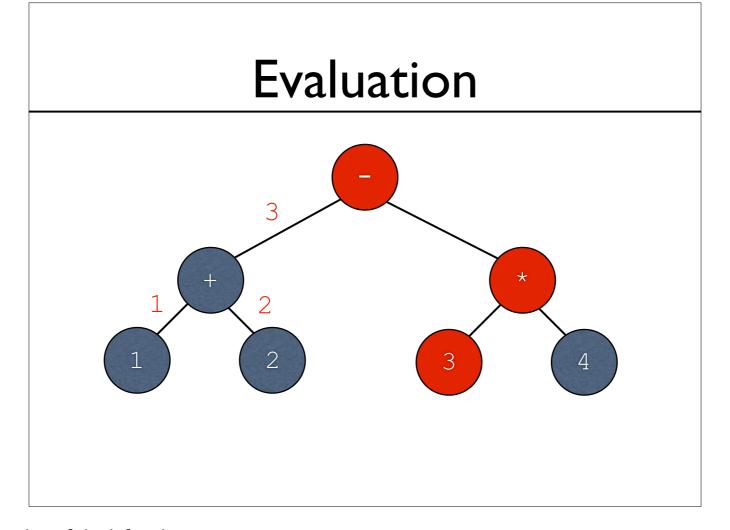


-Now + is taken care of

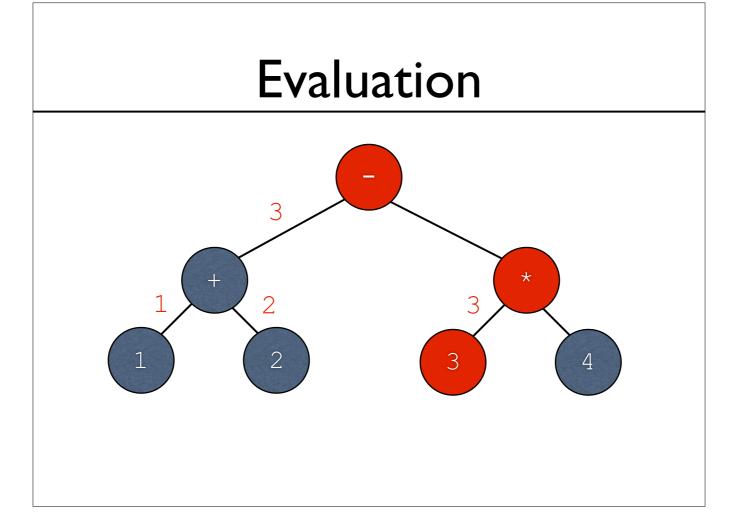
-Going back to -, - now has the value of the left subtree, and it needs the value of the right subtree



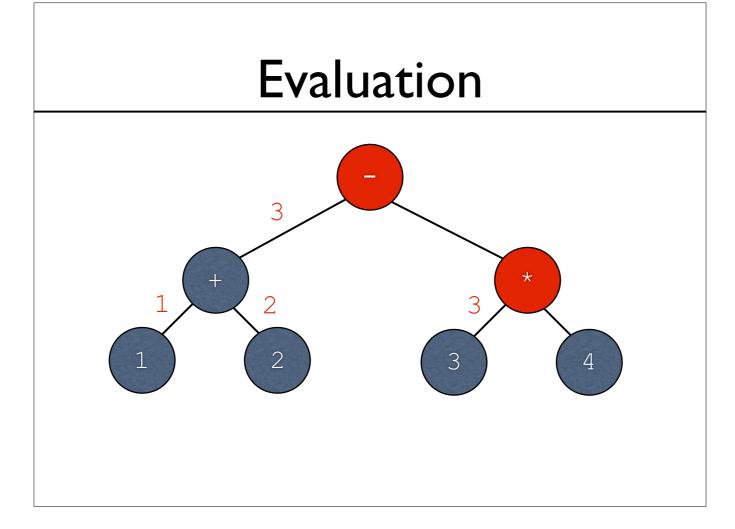
-Now we're on *, which needs the value of the left subtree...



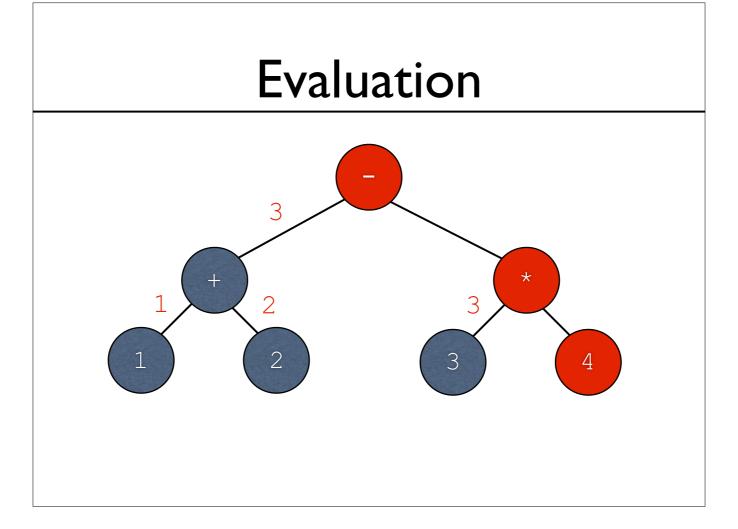
-Now we're on *, which needs the value of the left subtree...



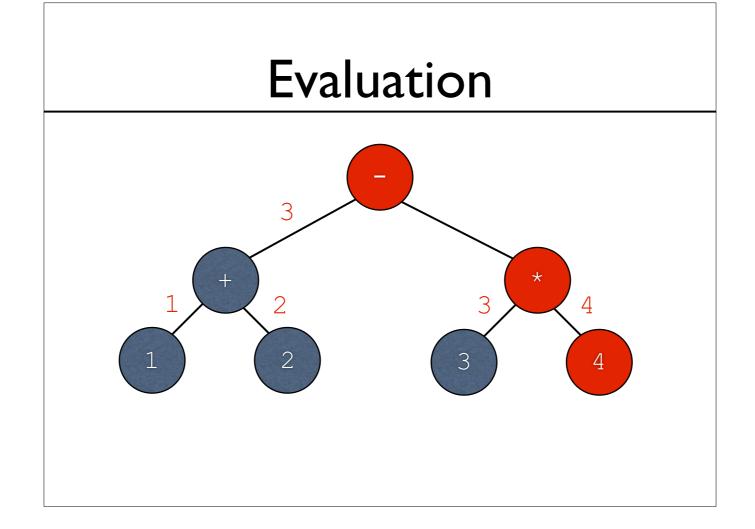
-Leaves again return the values held within...



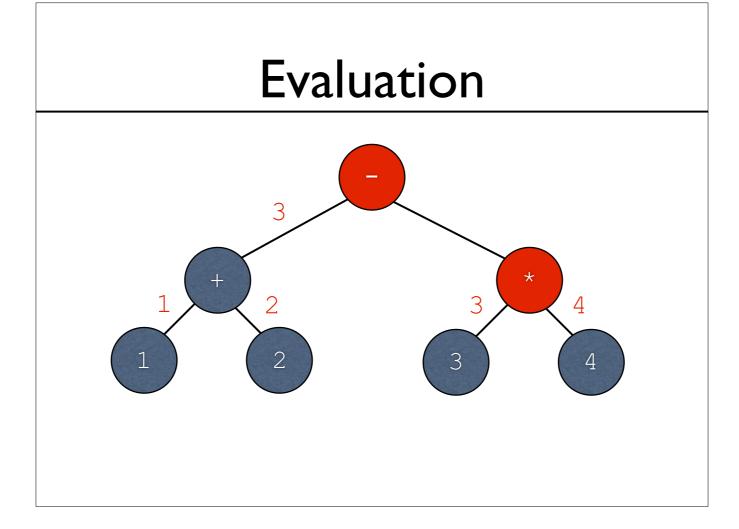
-Left subtree done; * now needs the value of the right subtree...



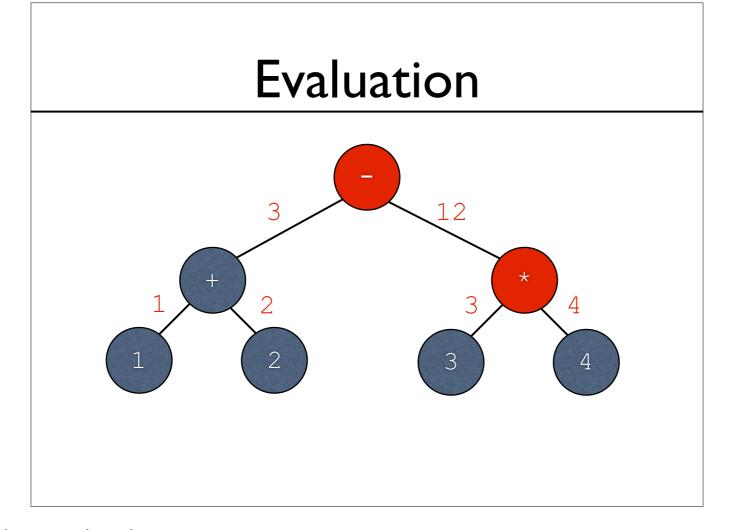
-Left subtree done; * now needs the value of the right subtree...



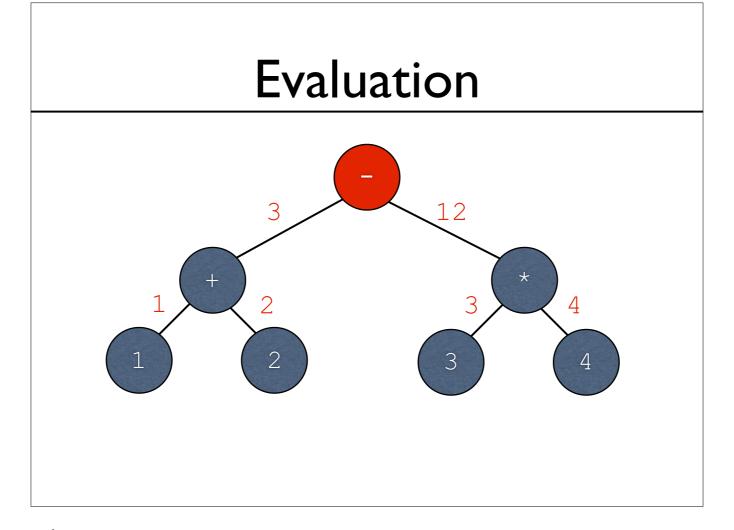
-Leaf returns value held within



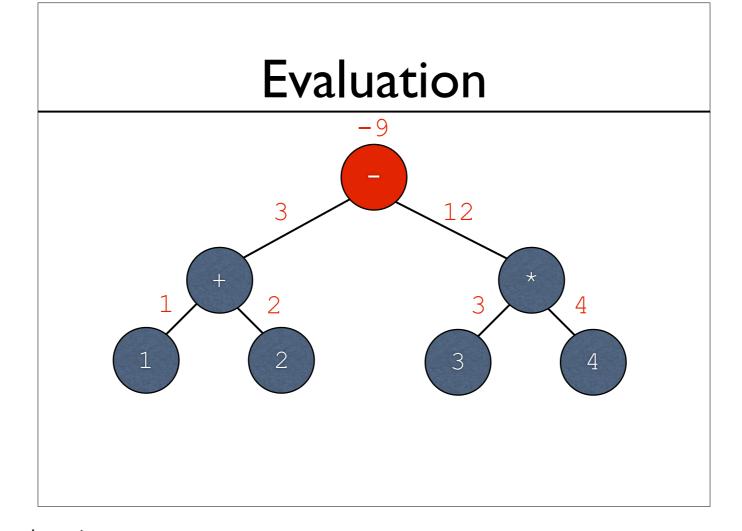
-Leaf is done. * now has both operands it needs...



-* performs the multiplication and returns the value



-The root - node now has both operands...



-...and it returns the result of the subtraction

Exercise: Second Side of AST/Evaluation Sheet

Evaluator Example:

arithmetic_evaluator.py

-Complete example online; we'll live-code this in class

SAT and Semantic Tableau

SAT Background

- Short for the Boolean satisfiability problem
- Given a Boolean formula with variables, is there an assignment of true/false to the variables which makes the formula true?

- Short for the Boolean satisfiability problem
- Given a Boolean formula with variables, is there an assignment of true/false to the variables which makes the formula true?

$$(x \ V \ \neg y) \ \Lambda \ (\neg x \ V \ z)$$

- Short for the Boolean satisfiability problem
- Given a Boolean formula with variables, is there an assignment of true/false to the variables which makes the formula true?

 $(x \ V \ \neg y) \ \Lambda \ (\neg x \ V \ z)$ Yes: x is true, z is true

- Short for the Boolean satisfiability problem
- Given a Boolean formula with variables, is there an assignment of true/false to the variables which makes the formula true?

$$(x \ V \ \neg y) \ \Lambda \ (\neg x \ V \ z)$$

Yes: x is true, z is true

$$(x \land \neg x)$$

- Short for the Boolean satisfiability problem
- Given a Boolean formula with variables, is there an assignment of true/false to the variables which makes the formula true?

$$(x \ V \ \neg y) \ \Lambda \ (\neg x \ V \ z)$$

Yes: x is true, z is true

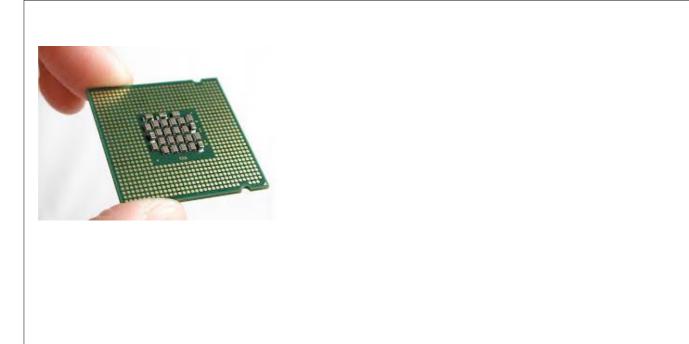
$$(x \land \neg x)$$

No

Widespread usage in hardware and software verification

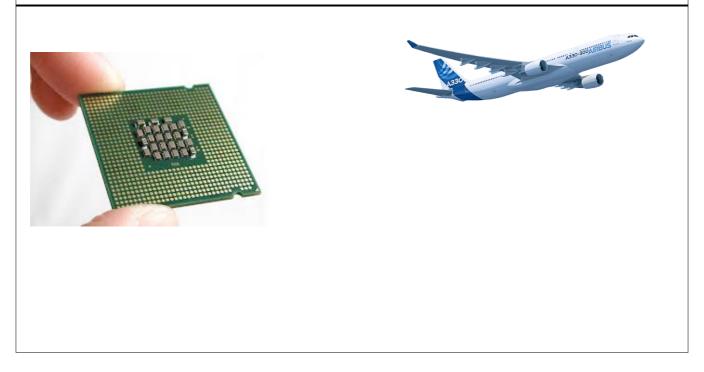
- -Verification as in _proving_ the system does what we intend
- -Much stronger guarantees than testing
- -Testing can prove the existence of a bug (a failed test), whereas verification proves the absence of bugs (relative to the theorems proven)

Widespread usage in hardware and software verification



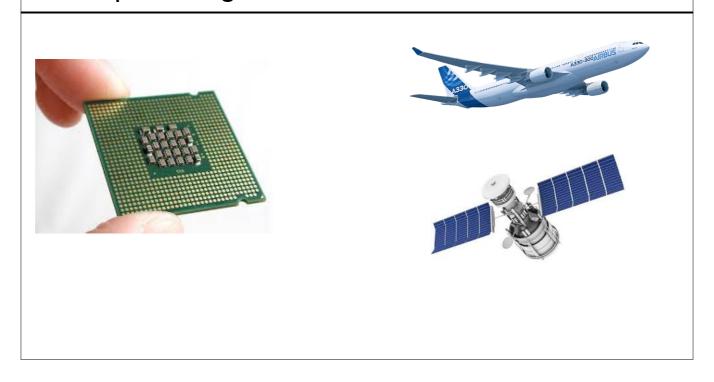
- -Circuits can be represented as Boolean formulas
- -Can basically phrase proofs as Circuit A BadThing. If unsatisfiable, then BadThing cannot occur. If satisfiable, then the solution gives the circumstance under which BadThing occurs.
- -Many details omitted (entire careers are based on this stuff)

Widespread usage in hardware and software verification



- -(Likely) used by AirBus to verify that flight control software does the right thing
- -Lots of proprietary details so it's not 100% clear how this verification works, but SAT is still relevant to the problem

Widespread usage in hardware and software verification



-Nasa uses software verification for a variety of tasks; SAT is relevant, though other techniques are used, too

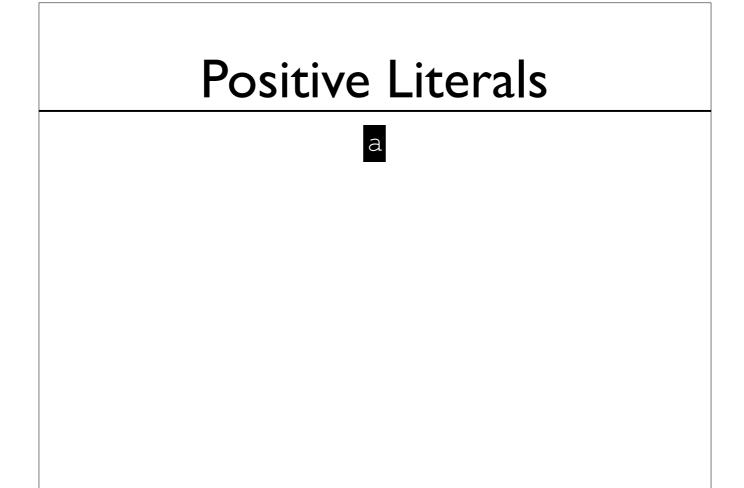
Relevance to Logic Programming

- Methods for solving SAT can be used to execute logic programs
- Logic programming can be phrased as SAT with some additional stuff

Semantic Tableau

- One method for solving SAT instances
- Basic idea: iterate over the formula
 - Maintain subformulas that must be true
 - Learn which variables must be true/false
 - Stop at conflicts (unsatisfiable), or when no subformulas remain (have solution)

-There are many methods to this



-As in, the input formula is simply "a"

Positive Literals [a] [a] {}

- -One subformula must be true: a
- -Initially, we don't know what any variables must map to

-For formula "a" to be true, it must be the case that a is true

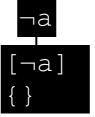
Positive Literals

-No subformulas remain, so we are done. The satisfying solution is that a must be true.

Negative Literals

-As in, the input formula is simply " $\neg a$ "

Negative Literals



- -One subformula must be true: ¬a
- -Initially, we don't know what any variables must map to

Negative Literals [¬a] {} [a -> f}

-For subformula " $\neg a$ " to be true, it must be the case that a is false

-No subformulas remain, so we are done. The satisfying solution is that "a" must be false.

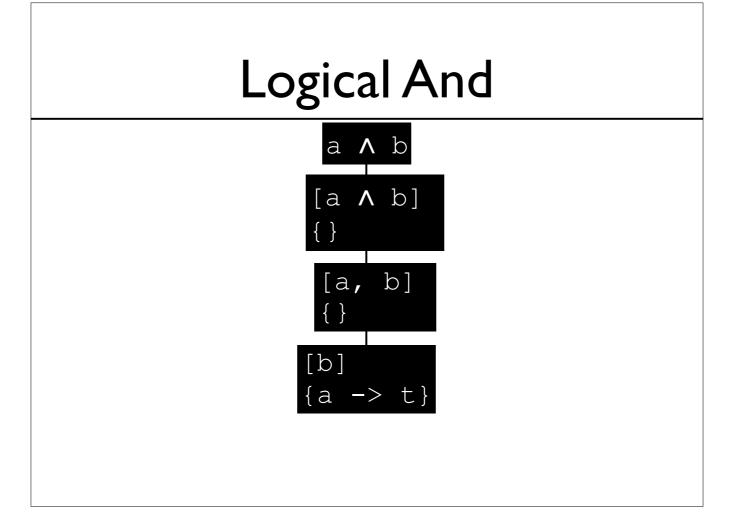
Logical And

Logical And a ^ b [a ^ b] {}

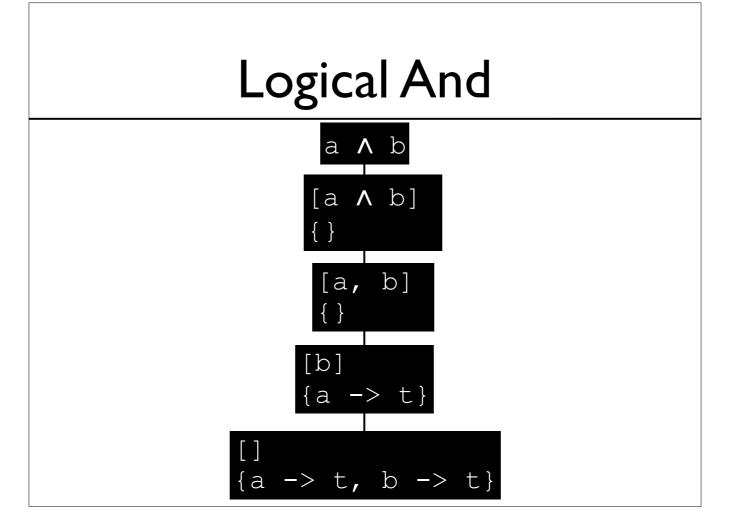
- -Initially, one subformula must be true: a \wedge b
- -Initially, we don't know what any variable must map to

Logical And a ^ b [a ^ b] {} [a, b] {}

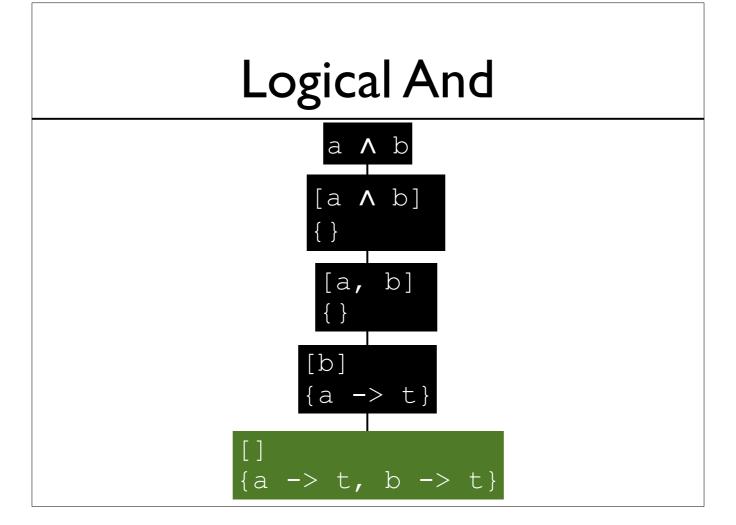
-For a ${\scriptstyle \wedge}$ b to be true, subformulas a and b must both be true



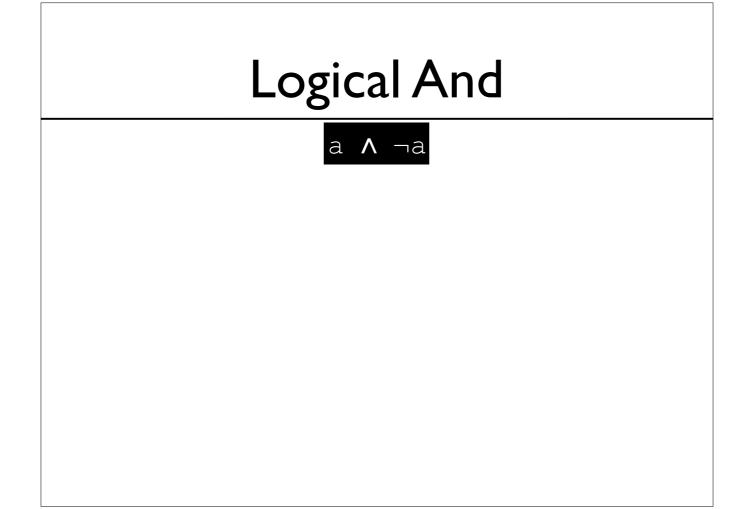
-From the positive literal case, for formula a to be true, variable a must be true



-From the positive literal case, for formula b to be true, variable b must be true

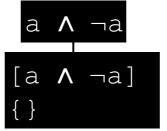


-No subformulas remain, so we are done with the solution that both a and b must be true

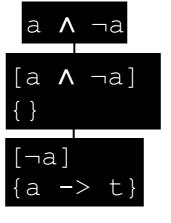


-Alternative example, showing a conflict

Logical And



Logical And



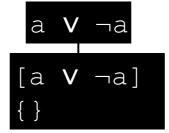
Logical And a ^ ¬a [a ^ ¬a] {} [¬a] {a -> t}

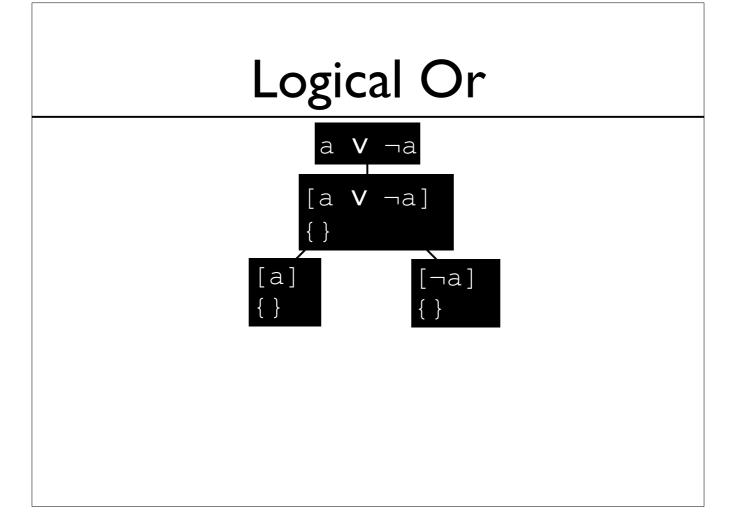
- -Now we have a problem: for formula $\neg a$ to be true, it must be the case that variable a is false
- -We've already recorded that variable a must be true, which is the opposite of what we expect.
- -As such, we have a conflict this formula is unsatisfiable

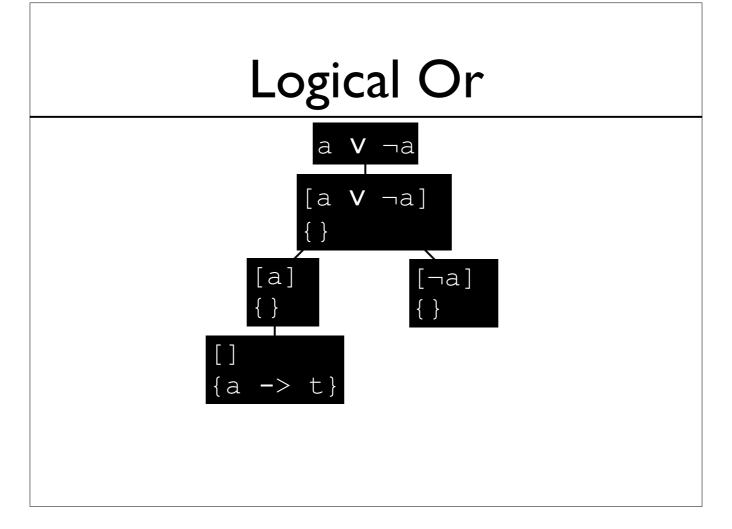
Exercise: First Side of SAT Sheet

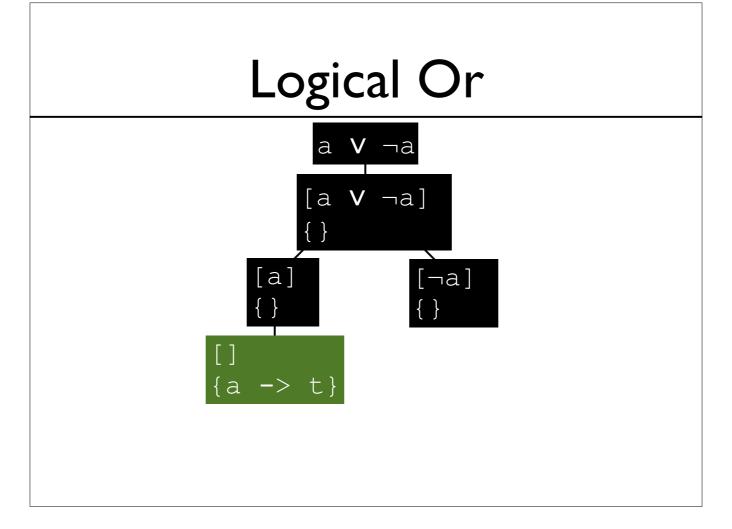
Logical Or a v ¬a

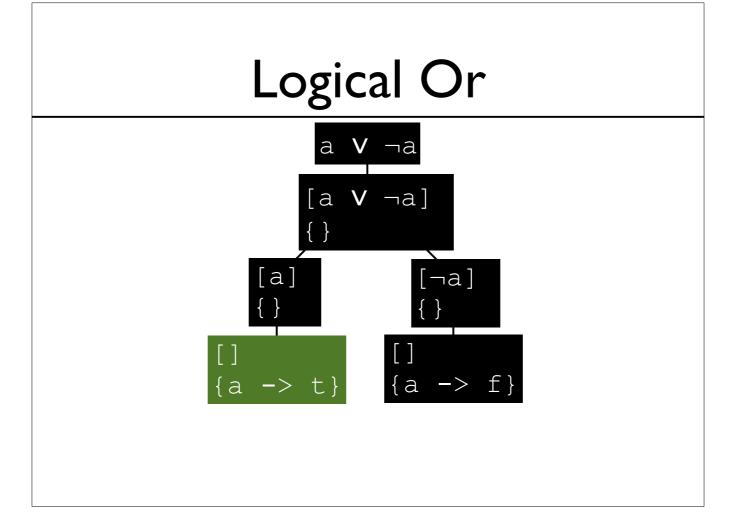
Logical Or a v ¬a

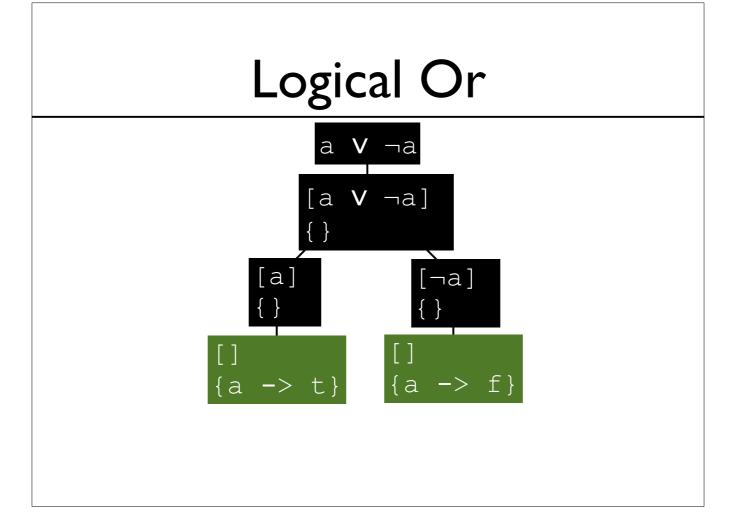


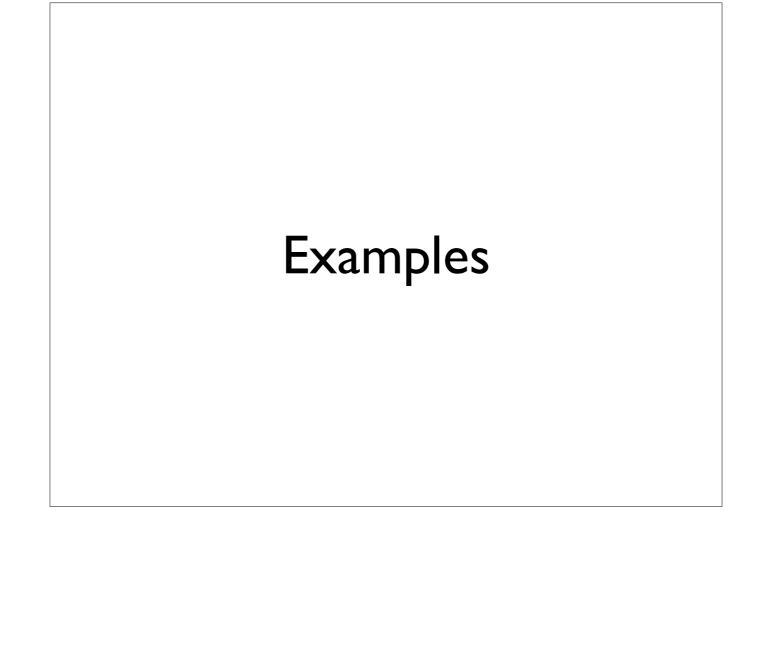








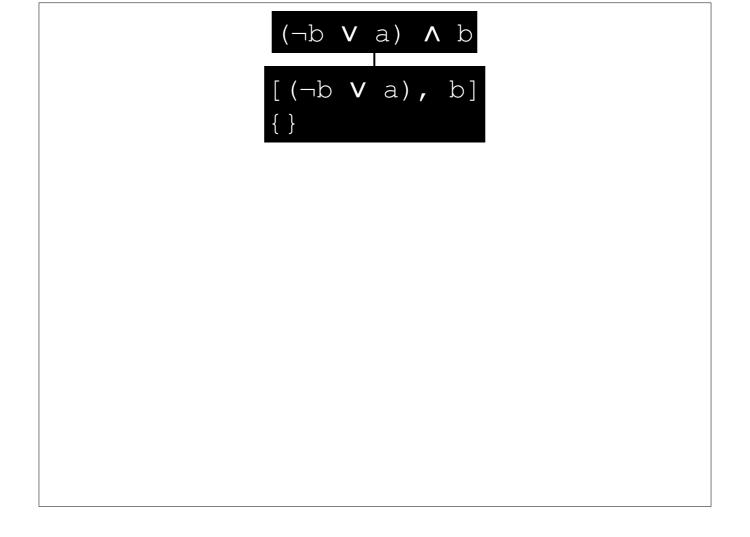




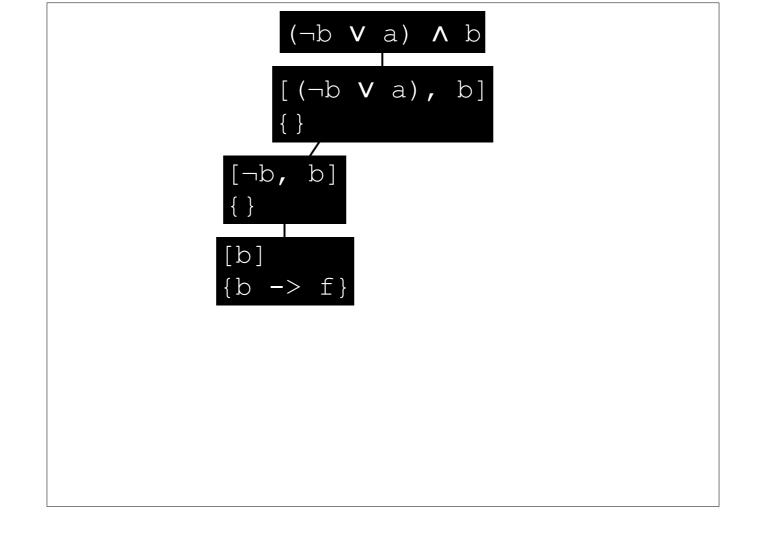
Example 1:

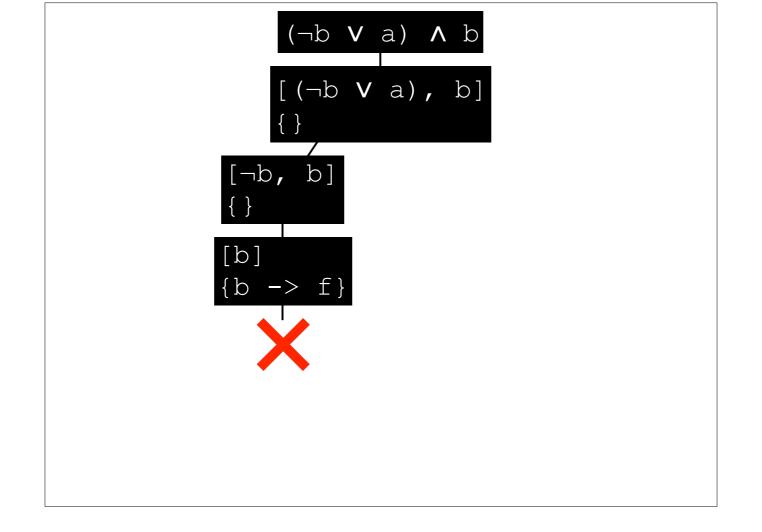
 $(\neg b \ V \ a) \ \Lambda \ b$

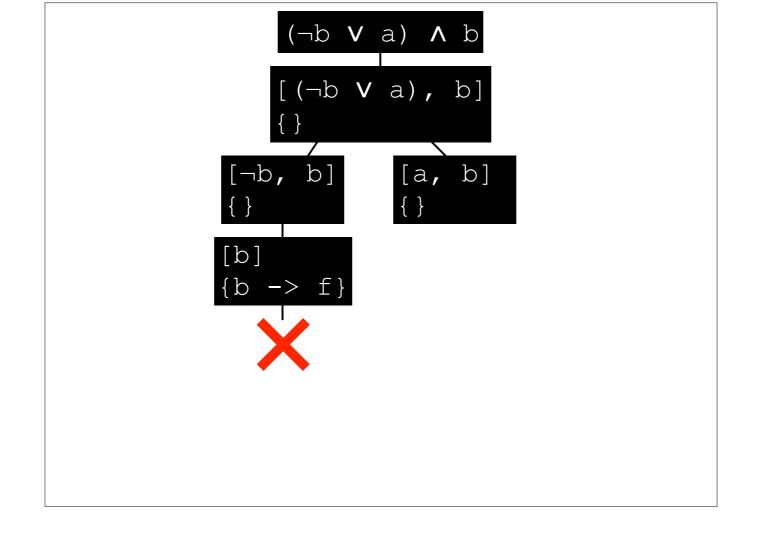
(¬b V a) ∧ b

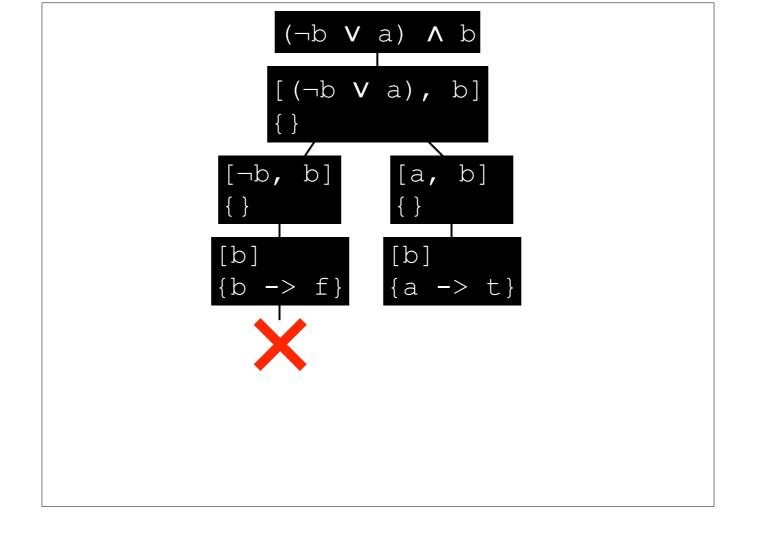


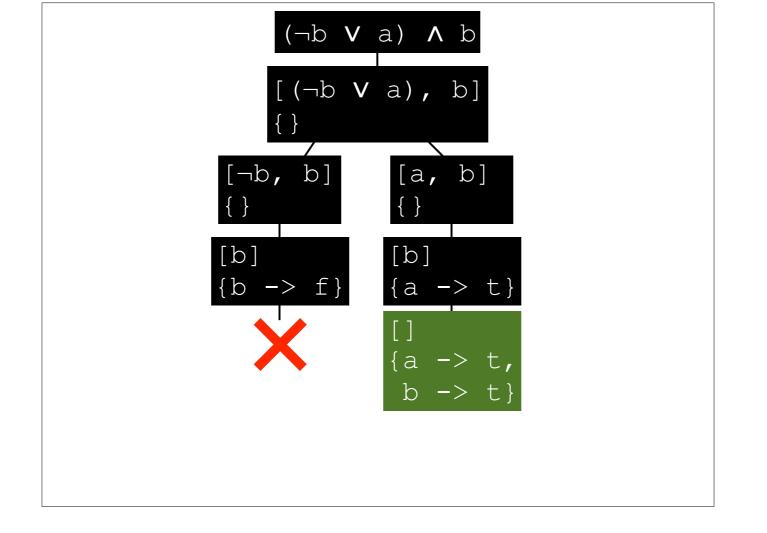
```
(¬b v a) ∧ b
   [(¬b V a), b]
{ }
[¬b, b]
```







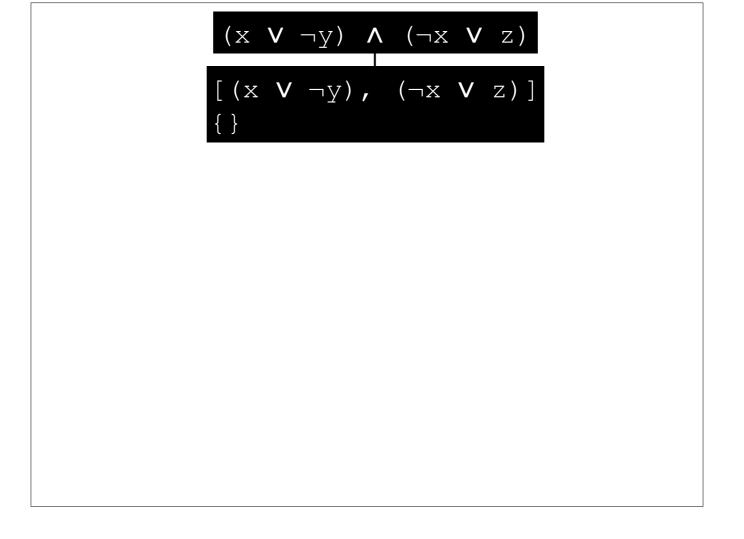




Example 2:

$$(x \ V \ \neg y) \ \Lambda \ (\neg x \ V \ z)$$

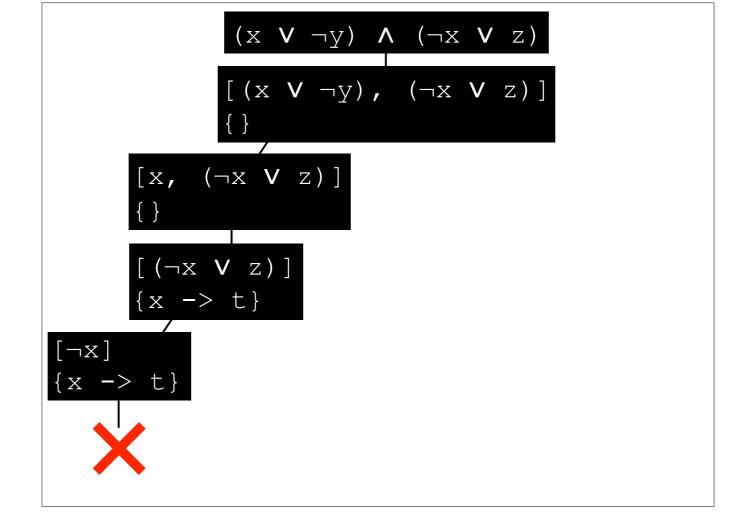
(x V	¬y)	٨	(¬X	V z)		

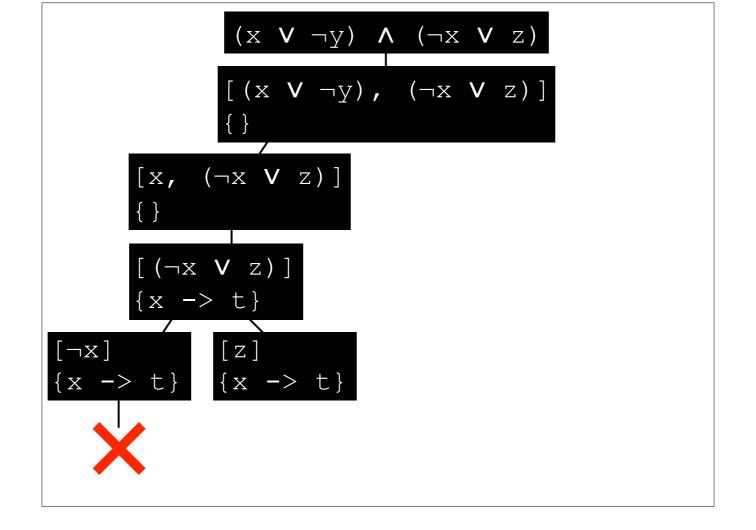


```
(x V \neg y) \land (\neg x V z)
        [(x \ V \ \neg y), (\neg x \ V \ z)]
[x, (\neg x \lor z)]
```

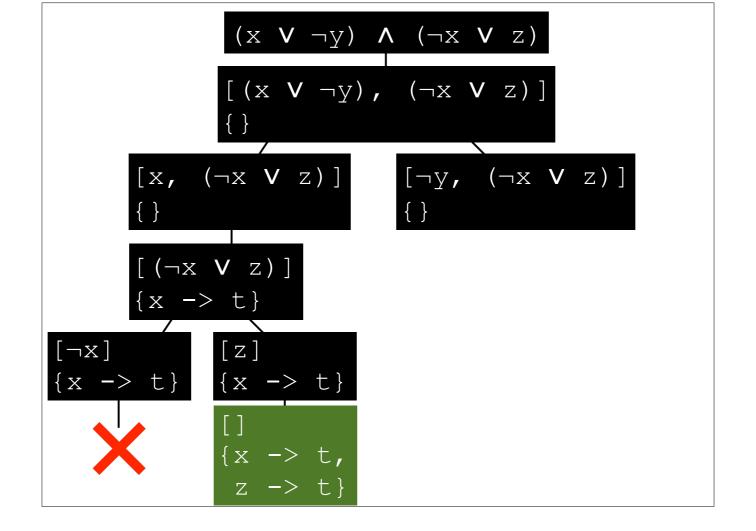
```
(x \ V \ \neg y) \ \Lambda \ (\neg x \ V \ z)
         [(x V \neg y), (\neg x V z)]
[x, (\neg x \lor z)]
[(¬x V z)]
\{x \rightarrow t\}
```

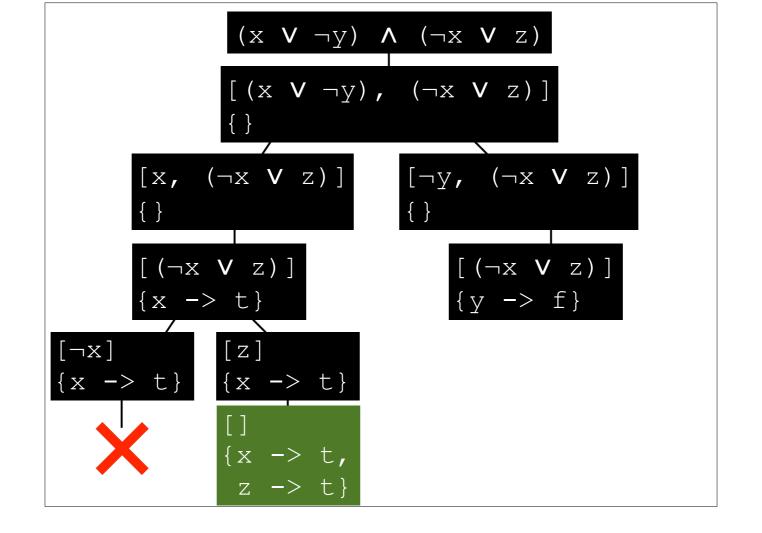
```
(x \ V \ \neg y) \ \Lambda \ (\neg x \ V \ z)
                [(x V \neg y), (\neg x V z)]
        [x, (\neg x V z)]
       [ (¬x V z)]
        {x -> t}
[\neg X]
\{x \rightarrow t\}
```

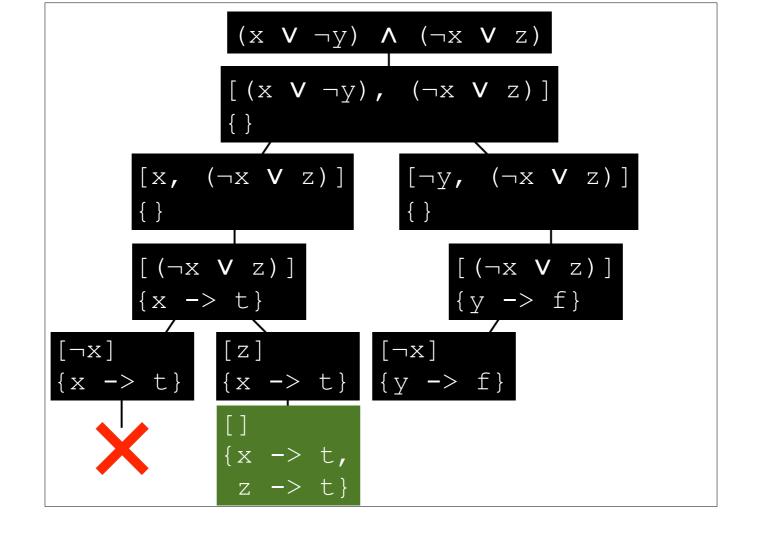


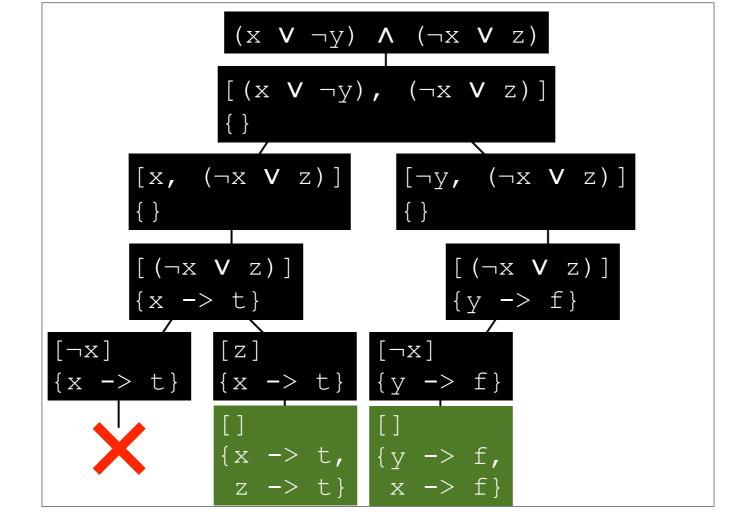


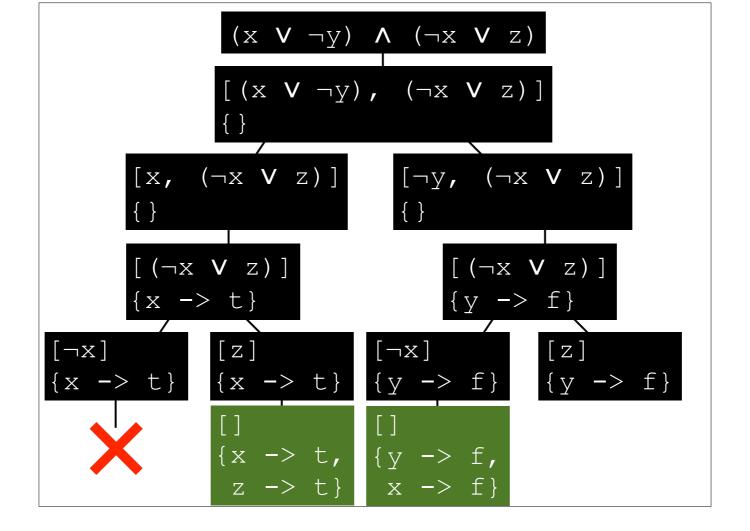
```
(x \ V \ \neg y) \ \Lambda \ (\neg x \ V \ z)
                  [(x \ V \ \neg y), (\neg x \ V \ z)]
        [x, (\neg x \lor z)]
        [(¬x V z)]
        {x -> t}
               [z]
[\, \neg \, \chi \,]
\{x \rightarrow t\} \{x \rightarrow t\}
                   z -> t}
```

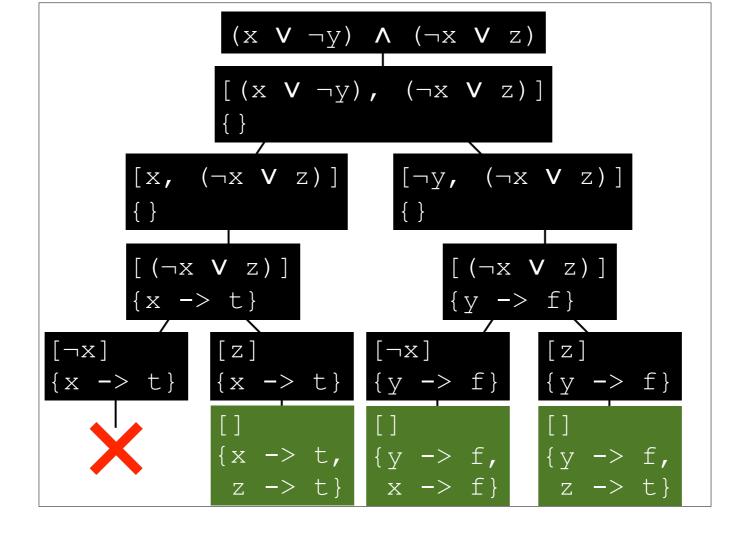












Exercise: Second Side of SAT Sheet